Regulation of AP-1 Activity by Adenovirus E1A: Dissection of Dimers Containing Jun, Fos, and ATF/CREB Members

Author(s):  
Hans van Dam ◽  
Alex J. van der Eb
Keyword(s):  
2003 ◽  
Vol 369 (3) ◽  
pp. 477-484 ◽  
Author(s):  
Antonio De LUCA ◽  
Anna SEVERINO ◽  
Paola De PAOLIS ◽  
Giuliano COTTONE ◽  
Luca De LUCA ◽  
...  

Thyroid hormone receptors (TRs) and members of the myocyte enhancer factor 2 (MEF2) family are involved in the regulation of muscle-specific gene expression during myogenesis. Physical interaction between these two factors is required to synergistically activate gene transcription. p300/cAMP-response-element-binding-protein ('CREB')-binding protein (CBP) interacting with transcription factors is able to increase their activity on target gene promoters. We investigated the role of p300 in regulating the TR—MEF2A complex. To this end, we mapped the regions of these proteins involved in physical interactions and we evaluated the expression of a chloramphenicol acetyltransferase (CAT) reporter gene in U2OS cells under control of the α-myosin heavy chain promoter containing the thyroid hormone response element (TRE). Our results suggested a role of p300/CBP in mediating the transactivation effects of the TR—retenoid X receptor (RxR)—MEF2A complex. Our findings showed that the same C-terminal portion of p300 binds the N-terminal domains of both TR and MEF2A, and our in vivo studies demonstrated that TR, MEF2A and p300 form a ternary complex. Moreover, by the use of CAT assays, we demonstrated that adenovirus E1A inhibits activation of transcription by TR—RxR—MEF2A—p300 but not by TR—RxR—MEF2A. Our data suggested that p300 can bind and modulate the activity of TR—RxR—MEF2A at TRE. In addition, it is speculated that p300 might modulate the activity of the TR—RxR—MEF2A complex by recruiting a hypothetical endogenous inhibitor which may act like adenovirus E1A.


1998 ◽  
Vol 8 (6) ◽  
pp. 505-513 ◽  
Author(s):  
Eileen White
Keyword(s):  

1989 ◽  
Vol 3 (12a) ◽  
pp. 1991-2002 ◽  
Author(s):  
U Muller ◽  
M P Roberts ◽  
D A Engel ◽  
W Doerfler ◽  
T Shenk

Oncogene ◽  
2001 ◽  
Vol 20 (1) ◽  
pp. 125-132 ◽  
Author(s):  
Noma E Ladendorff ◽  
Susan Wu ◽  
Joseph S Lipsick

1992 ◽  
Vol 70 (10-11) ◽  
pp. 1268-1276 ◽  
Author(s):  
Joe S. Mymryk ◽  
Janice D. Oakes ◽  
Senthil K. Muthuswamy ◽  
Pietro D'Amico ◽  
Stanley T. Bayley ◽  
...  

Mouse BC3H1 myoblasts were stably transfected with the adenovirus 5 E1A gene. One clonal line, BC3E7, was found to differ in some important respects from those previously reported for E1A-transformed myoblasts. In contrast to BC3H1 cells which differentiate when confluent in medium containing 0.5% fetal calf serum (FCS), BC3E7 cells failed to elongate and align, to express acetylcholine receptor and creatine kinase, and to down-regulate expression of β- and γ-actins and tropomyosin isoform (TM) 1. However, increased synthesis of TMs 2, 3, and 4, and myosin light chain 1 associated with differentiation in BC3H1 still occurred in BC3E7 cells, and most surprisingly, α-actin was produced at a significant level in both proliferating and confluent BC3E7 cells. Interestingly, myogenin was expressed in confluent BC3E7 cells in 0.5% FCS, but not in 20%. The level of E1A expression in BC3E7 cells was found to be very low by analysis of mRNA, by immunoprecipitation of E1A protein, and by the ability of BC3E7 cells to complement the E1A-deficient adenovirus mutant dl312. These results suggest that different levels of E1A may be needed to repress different promoters and that E1A does not block myogenic differentiation by repressing myogenin expression, but represses each muscle gene independently.Key words: actin, adenovirus 5 E1A, BC3H1 myoblasts, myogenin.


1986 ◽  
Vol 50 (4) ◽  
pp. 819-825
Author(s):  
Ichiro TAKAHASHI ◽  
Takao ISOGAI ◽  
Kazukiyo ONODERA ◽  
Yoshiharu MARUYAMA

1988 ◽  
Vol 8 (11) ◽  
pp. 4799-4807 ◽  
Author(s):  
L J Brunet ◽  
A J Berk

The adenovirus E1A proteins are essential for the normal temporal activation of transcription from every other adenoviral early promoter. High-level E1A expression in the absence of viral infection would facilitate biochemical studies of E1A-mediated transactivation. Toward this end, we introduced the adenovirus type 2 E1A gene under the control of the murine mammary tumor virus promoter into HeLa cells. Uninduced cells expressed little or no detectable E1A mRNA. Upon induction, mRNA levels accumulated to about 50% of the level observed in 293 cells. The level of E1A expression in these cells could be controlled by varying the concentration of the inducing glucocorticoid. Under these conditions of varying E1A concentrations, it was observed that activation of the E2, E3, and E4 promoters of H5dl312 initiated at the same E1A concentration and that transcription from each promoter increased as the E1A concentration increased. These results indicate that E1A-mediated transactivation is proportional to the concentration of E1A protein. E1A-dependent transcriptional stimulation of the E4 promoter was reproduced in an in vitro transcription system, demonstrating that expression of only the E1A proteins was sufficient to increase the transcriptional activity of nuclear extracts.


1986 ◽  
Vol 6 (11) ◽  
pp. 3798-3806
Author(s):  
L E Babiss ◽  
J M Friedman ◽  
J E Darnell

In the accompanying paper (Friedman et al., Mol. Cell. Biol. 6:3791-3797, 1986), hepatoma-specific expression of the rat albumin promoter within the adenovirus genome was demonstrated. However, the rate of transcription was very low compared with that of the endogenous chromosomal albumin gene. Here we show that in hepatoma cells the adenovirus E1A enhancer, especially in the presence of E1A protein, greatly stimulates transcription from the albumin promoter but not the mouse beta-globin promoter. This enhancer-dependent stimulation did not occur in myeloma cells in which a virus containing a immunoglobulin promoter and enhancer did function. These experiments suggest a limited distribution in cultured differentiated cells of cell-specific transcription factors. However, either the regulation of such cell-specific factors breaks down in other cultured cells, or strictly cell-specific factors are not at play in controlling cell-specific transcription, because HeLa cells could transcribe the albumin promoter from the same start site about 10% as well as hepatomas could and 293 cells could transcribe both albumin and globin promoters.


1989 ◽  
Vol 9 (11) ◽  
pp. 5143-5153
Author(s):  
J T Bruder ◽  
P Hearing

We have identified a cellular enhancer-binding protein, present in nuclear extracts prepared from human and rodent cells, that binds to the adenovirus E1A enhancer element I sequence. The factor has been termed EF-1A, for enhancer-binding factor to the E1A core motif. EF-1A was found to bind to two adjacent, related sequence motifs in the E1A enhancer region (termed sites A and B). The binding of EF-1A to these adjacent sites, or to synthetic dimerized sites of either motif, was cooperative. The cooperative binding of EF-1A to these sites was not subject to strict spacing constraints. EF-1A also bound to related sequences upstream of the E1A enhancer region and in the polyomavirus and adenovirus E4 enhancer regions. The EF-1A-binding region in the E1A enhancer stimulated expression of a linked gene in human 293 cells when multimerized. Based on the contact sites for EF-1A binding determined by chemical interference assays, this protein appears to be distinct from any previously characterized nuclear binding protein.


Sign in / Sign up

Export Citation Format

Share Document