Effects of Sediment Loading on Food Perception and Ingestion by Freshwater Copepods

2021 ◽  
pp. 315-322
Author(s):  
Nancy M. Butler
2010 ◽  
Author(s):  
Kristopher R Brown ◽  
Yi-Jun Xu ◽  
Den Davis ◽  
Daniel L Thomas
Keyword(s):  

Drones ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 20
Author(s):  
Joseph P. Hupy ◽  
Cyril O. Wilson

Soil erosion monitoring is a pivotal exercise at macro through micro landscape levels, which directly informs environmental management at diverse spatial and temporal scales. The monitoring of soil erosion can be an arduous task when completed through ground-based surveys and there are uncertainties associated with the use of large-scale medium resolution image-based digital elevation models for estimating erosion rates. LiDAR derived elevation models have proven effective in modeling erosion, but such data proves costly to obtain, process, and analyze. The proliferation of images and other geospatial datasets generated by unmanned aerial systems (UAS) is increasingly able to reveal additional nuances that traditional geospatial datasets were not able to obtain due to the former’s higher spatial resolution. This study evaluated the efficacy of a UAS derived digital terrain model (DTM) to estimate surface flow and sediment loading in a fluvial aggregate excavation operation in Waukesha County, Wisconsin. A nested scale distributed hydrologic flow and sediment loading model was constructed for the UAS point cloud derived DTM. To evaluate the effectiveness of flow and sediment loading generated by the UAS point cloud derived DTM, a LiDAR derived DTM was used for comparison in consonance with several statistical measures of model efficiency. Results demonstrate that the UAS derived DTM can be used in modeling flow and sediment erosion estimation across space in the absence of a LiDAR-based derived DTM.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 39 ◽  
Author(s):  
Lifeng Yuan ◽  
Kenneth J. Forshay

Soil erosion and lake sediment loading are primary concerns of watershed managers around the world. In the Xinjiang River Basin of China, severe soil erosion occurs primarily during monsoon periods, resulting in sediment flow into Poyang Lake and subsequently causing lake water quality deterioration. Here, we identified high-risk soil erosion areas and conditions that drive sediment yield in a watershed system with limited available data to guide localized soil erosion control measures intended to support reduced sediment load into Poyang Lake. We used the Soil and Water Assessment Tool (SWAT) model to simulate monthly and annual sediment yield based on a calibrated SWAT streamflow model, identified where sediment originated, and determined what geographic factors drove the loading within the watershed. We applied monthly and daily streamflow discharge (1985–2009) and monthly suspended sediment load data (1985–2001) to Meigang station to conduct parameter sensitivity analysis, calibration, validation, and uncertainty analysis of the model. The coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE), percent bias (PBIAS), and RMSE -observation’s standard deviation ratio (RSR) values of the monthly sediment load were 0.63, 0.62, 3.8%, and 0.61 during calibration, respectively. Spatially, the annual sediment yield rate ranged from 3 ton ha−1year−1 on riparian lowlands of the Xinjiang main channel to 33 ton ha−1year−1 on mountain highlands, with a basin-wide mean of 19 ton ha−1year−1. The study showed that 99.9% of the total land area suffered soil loss (greater than 5 ton ha−1year−1). More sediment originated from the southern mountain highlands than from the northern mountain highlands of the Xinjiang river channel. These results suggest that specific land use types and geographic conditions can be identified as hotspots of sediment source with relatively scarce data; in this case, orchards, barren lands, and mountain highlands with slopes greater than 25° were the primary sediment source areas. This study developed a reliable, physically-based streamflow model and illustrates critical source areas and conditions that influence sediment yield.


2021 ◽  
Author(s):  
Robin Fondberg ◽  
Johan N Lundström ◽  
Janina Seubert

Abstract Repeated exposure can change the perceptual and hedonic features of flavor. Associative learning during which a flavor’s odor component is affected by co-exposure with taste is thought to be central in this process. However, changes can also arise due to exposure to the odor in itself. The aim of this study was to dissociate effects of associative learning from effects of exposure without taste by repeatedly presenting one odor together with sucrose and a second odor alone. Sixty individuals attended two testing sessions separated by a five-day exposure phase during which the stimuli were presented as flavorants in chewing gums that were chewed three times daily. Ratings of odor sweetness, odor pleasantness, odor intensity enhancement by taste, and odor referral to the mouth were collected at both sessions. Consistent with the notion that food preferences are modulated by exposure, odor pleasantness increased between the sessions independently of whether the odor (basil or orange flower) had been presented with or without sucrose. However, we found no evidence of associative learning in any of the tasks. In addition, exploratory equivalence tests suggested that these effects were either absent or insignificant in magnitude. Taken together, our results suggest that the hypothesized effects of associative learning are either smaller than previously thought or highly dependent on the experimental setting. Future studies are needed to evaluate the relative support for these explanations and, if experimental conditions can be identified that reliably produce such effects, to identify factors that regulate the formation of new odor-taste associations.


1998 ◽  
Vol 2 (2/3) ◽  
pp. 159-171 ◽  
Author(s):  
H. Kooi ◽  
J. J. de Vries

Abstract. A one-dimensional model is used to investigate the relationship between land subsidence and compaction of basin sediments in response to sediment loading. Analysis of the model equations and numerical experiments demonstrate quasi-linear systems behaviour and show that rates of land subsidence due to compaction: (i) can attain a significant fraction (>40%) of the long-term sedimentation rate; (ii) are hydrodynamically delayed with respect to sediment loading. The delay is controlled by a compaction response time τc that can reach values of 10-5-107 yr for thick shale sequences. Both the behaviour of single sediment layers and multiple-layer systems are analysed. Subsequently the model is applied to the coastal area of the Netherlands to illustrate that lateral variability in compaction-derived land subsidence in sedimentary basins largely reflects the spatial variability in both sediment loading and compaction response time. Typical rates of compaction-derived subsidence predicted by the model are of the order of 0.1 mm/yr but may reach values in excess of 1 mm/yr under favourable conditions.


2021 ◽  
Author(s):  
Hillary A. Miller ◽  
Shijiao Huang ◽  
Megan L. Schaller ◽  
Elizabeth S. Dean ◽  
Angela M. Tuckowski ◽  
...  

AbstractAn organism’s ability to perceive and respond to changes in its environment is crucial for its health and survival. Here we reveal how the most well-studied longevity intervention, dietary restriction (DR), acts in-part through a cell non-autonomous signaling pathway that is inhibited by the perception of attractive smells. Using an intestinal reporter for a key gene induced by DR but suppressed by attractive smells, we identify three compounds that block food perception in C. elegans, thereby increasing longevity as DR mimetics. These compounds clearly implicate serotonin and dopamine in limiting lifespan in response to food perception. We further identify an enteric neuron in this pathway that signals through the serotonin receptor 5-HT1A/ser-4 and dopamine receptor DRD2/dop-3. Aspects of this pathway are conserved in D. melanogaster and mammalian cells. Thus, blocking food perception through antagonism of serotonin or dopamine receptors is a plausible approach to mimic the benefits of dietary restriction.


Sign in / Sign up

Export Citation Format

Share Document