Predicting Atrazine Removal by Ozone-Induced Biological Activated Carbon Filtration

Author(s):  
Ervin Orlandini
2017 ◽  
Vol 113 ◽  
pp. 160-170 ◽  
Author(s):  
Dong Li ◽  
Ben Stanford ◽  
Eric Dickenson ◽  
Wendell O. Khunjar ◽  
Carissa L. Homme ◽  
...  

1999 ◽  
Vol 34 (4) ◽  
pp. 615-632 ◽  
Author(s):  
Joanne Sketchell ◽  
Hans G. Peterson ◽  
Nick Christofi

Abstract Large quantities of dissolved organic carbon in prairie surface water reservoirs make sustainable treatment quite challenging. Organic material is a precursor for the formation of disinfection by-products. Here, ozonation and biological activated carbon filtration were used as methods for removing dissolved organic carbon from the water of a small prairie reservoir used as a drinking water source. Biofiltration alone yielded significant reductions in dissolved organic carbon, colour, total trihalomethanes and chlorine demand. When ozonation preceded biofiltration, the increased proportion of biodegradable dissolved organic carbon allowed for significantly greater (p<0.05


2002 ◽  
Vol 2 (1) ◽  
pp. 139-146 ◽  
Author(s):  
P.A.C. Bonné ◽  
J.A.M.H. Hofman ◽  
J.P. van der Hoek

Since March 1995 Amsterdam Water Supply has applied biological activated carbon filtration (BACF) in the treatment process of the Leiduin plant. In this plant (capacity 70 × 106 m3/y) pretreated River Rhine water is infiltrated in the dune area, west of Amsterdam, for artificial recharge. Post treatment comprises rapid sand filtration, ozonation, hardness removal, biological activated carbon filtration and slow sand filtration. At the start the carbon reactivation frequency was set at 18 months, based on removal efficiencies for AOX (adsorbable organic halogens), DOC, pesticides and micropollutants. After four years of operation of a pilot plant (10 m3/hour) in parallel with the full-scale plant, the remaining removal capacity and the break-through profile of the carbon filters was investigated. In contrast to the full-scale plant, no carbon reactivation was applied in the pilot plant during the operation of 4 years. Spiking experiments were carried out after ozonation, in the influent of the biological activated carbon filtration with a cocktail of different pesticides after 1.5, 3 and 4 years. Influent concentrations varied between 2 to 10 μg/l. Without carbon reactivation the filter effluent still complies with the Dutch drinking water standards and guide lines, as well as with the Amsterdam Water Supply standards: DOC is less than 2 mg/l (actually 1.2 mg/l) and AOX remains below 5 μg/l. After four years, with spiking concentrations of 2 μg/l still no pesticide break-through was observed in the two-stage biological activated carbon filtration process. It can be concluded that a running time of 3 years between two reactivations in the two stage biological active carbon filtration is achievable, without negatively affecting the finished water quality. Average DOC concentrations will increase up to 1.2 mg/l, from 1 mg/l with running times of 2 years. After four years or 100,000 bedvolumes the AOC content is equal to or lower than 10 μg/l after biological activated carbon filtration. With slow sand filtration at the end and as polishing step AOC will be less than 10-5 μg/l. With every extension of six months duration time a saving of Euro 305,000 on reactivation costs is possible. With every 6 month extension of the running time of the carbon filters a saving of €610,000 is realised on the reactivation costs of the Leiduin treatment plant.


1998 ◽  
Vol 37 (10) ◽  
pp. 101-106
Author(s):  
H. Sumitomo

From a series of experimental observations, it was found that removal rates of the offensive flavor 2-methyl-isoborneol(2-MIB) and ammonia by a biological treatment for water supply were rather unstable and that the removal rates of them often became reverse such as low removal in 2-MIB and high removal of ammonia. One reason for the reverse phenomenon was found that the affinities of sludge around bacteria with 2-MIB and ammonia often became reversed. The affinities of sludge with 2-MIB and ammonia were found to be changeable depending upon pH along with magnesium (Mg) and calcium (Ca) concentrations in sludge. From these findings, control of pH and magnesium calcium ratio (Mg/Ca) of raw water was recommended for simultaneous and stable removal of 2-MIB and ammonia. From plant scale experiments equipped with automatic pH controller, the effects of pH and Mg/Ca control for biological treatment of 2-MIB and ammonia were observed in a biological activated filtration. Here, a biological activated carbon filtration means a longer filtration than 40 to 50 days from the beginning. The obtained results were almost as expected, showing high removal rates of both 2-MIB and ammonia.


2011 ◽  
Vol 63 (1) ◽  
pp. 72-79 ◽  
Author(s):  
M. Weemaes ◽  
G. Fink ◽  
C. Lachmund ◽  
A. Magdeburg ◽  
D. Stalter ◽  
...  

In the frame of the European FP6 project Neptune, a combination of biological activated carbon with ultrafiltration (BioMAC) was investigated for micropollutant, pathogen and ecotoxicity removal. One pilot scale set-up and two lab-scale set-ups, of which in one set-up the granular activated carbon (GAC) was replaced by sand, were followed up during a period of 11 months. It was found that a combination of GAC and ultrafiltration led to an almost complete removal of antibiotics and a high removal (>80%) of most of the investigated acidic pharmaceuticals and iodinated contrast media. The duration of the tests did however not allow to conclude that the biological activation was able to extend the lifetime of the GAC. Furthermore, a significant decrease in estrogenic and anti-androgenic activity could be illustrated. The set-up in which GAC was replaced by sand showed a considerably lower removal efficiency for micropollutants, especially for antibiotics but no influence on steroid activity.


Sign in / Sign up

Export Citation Format

Share Document