Determination of the horizontal subgrade reaction coefficient for the backside of shoring systems in clayey soil

Author(s):  
H. Nakamura ◽  
H. Suzuki
2021 ◽  
Author(s):  
Kechen Zhu ◽  
Martha Gledhill

Here we archive a protocol that can be used to determine competition between a siderophore (ferrioxamine B) and humic like binding sites that are present in marine DOM. We use the NICA-Donnan model to describe binding by humic like binding sites in DOM. Constants for Fe binding to marine DOM are taken from Zhu et al., (2021). Thermodynamic constants describing binding between major ions, iron and ferrioxamine B are taken from Schijf and Burns, (2016). References Schijf, J., Burns, S.M., 2016. Determination of the Side-Reaction Coefficient of Desferrioxamine B in Trace-Metal-Free Seawater. Front. Mar. Sci. 3, 117. https://doi.org/10.3389/fmars.2016.00117 Zhu, K., Birchill, A.J., Milne, A., Ussher, S.J., Humphreys, M.P., Carr, N., Mahaffey, C., Lohan, M.C., Achterberg, E.P., Gledhill, M., 2021a. Equilbrium calculations of iron speciation and apparent iron solubility in the Celtic Sea at ambient pH using the NICA-Donnan model. Mar. Chem


2018 ◽  
Vol 13 (2) ◽  
pp. 87-93
Author(s):  
Muhammet Vefa Akpinar ◽  
Erhan Burak Pancar ◽  
Eren Şengül ◽  
Hakan Aslan

In this study effectiveness of lime stabilization and geocell reinforcement techniques of roads was investigated for low bearing capacity subgrades. For this purpose, a large-scale plate load test was designed and used. Clayey soil with high moisture content was reinforced with different percentages of hydrated lime (5%, 10%, 15% dry weight of the soil). The deflection and stress results indicated that lime stabilization or geocell reinforcement alone did not significantly increase subgrade reaction coefficient and bearing capacity values. Promising results were obtained on stabilization of weak subgrade when both techniques were used together. It was determined that cellular reinforcement increased the reaction modulus coefficient value and bearing capacity of the subgrade soil by more than 15% compared to the lime stabilization.


2018 ◽  
Author(s):  
N. H. H. Abdullah ◽  
N. W. Kuan ◽  
A. Ibrahim ◽  
B. N. Ismail ◽  
M. R. A. Majid ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Kunpeng Xu ◽  
Liping Jing ◽  
Xinjun Cheng ◽  
Haian Liang ◽  
Jia Bin

Subgrade reaction coefficient is commonly considered as the primary challenge in simplified seismic design of underground structures. Carrying out test is the most reliable way to acquire this intrinsic soil property. Owing to the limitations of experimental cost, time consumption, soil deformation mode, size effect, and confined condition, the existing testing methods cannot satisfy the requirements of high-precision subgrade reaction coefficient in seismic design process of underground structures. Accordingly, the present study makes an attempt to provide new laboratory testing methods considering realistic seismic response of soil, based on shaking table test and quasistatic test. Conventional shaking table test for sandy free-field was performed, with the results indicating that the equivalent normal subgrade reaction coefficients derived from the experimental hysteretic curves are reasonable and verifying the deformation mode under seismic excitation. A novel multifunctional quasistatic pushover device was invented, which can simulate the most unfavorable deformation mode of soil during the earthquake. In addition, the first successful application of an innovative quasistatic testing method in evaluating subgrade reaction coefficient was reported. The findings of this study provide preliminary detailed insights into subgrade reaction coefficient evaluation which can benefit seismic design of underground structures.


Sign in / Sign up

Export Citation Format

Share Document