iron solubility
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 24)

H-INDEX

30
(FIVE YEARS 3)

Author(s):  
Yi Du ◽  
Coralie Brumaud ◽  
Guillaume Habert

Weak water resistance is a big obstacle for clay materials to overcome in modern construction industry. Compared to the hydraulic stabilized additives, bio-additives have a lower carbon footprint and have been used in many vernacular construction techniques to immobilize clay. In this work, the traditional recipes of tannin and iron have been revisited, in particular, the question of pH and iron solubility has been explored. Oak tannin and FeCl3 were chosen and their influence on the properties of clay materials in terms of rheological properties, compressive strength, and water resistance were characterized in the lab. Based on the results, tannin can reduce the yield stress of paste while with the addition of FeCl3, the yield stress of tannin dispersed pastes increased to a value similar to the reference sample but lower than the value contain only FeCl3. The increase was attributed to the complex reaction between tannin and Fe3+. The iron-tannin complexes can also increase the samples’ strength and water resistance. Although the complexes did not change the hydrophilic properties of the samples’ surface, they prevent the ingression of water. These results are very promising as they allow the production of a fluid earth material that is water-resistant. This opens a wide range of application potentials and can help to mainstream earth materials in construction.


2021 ◽  
Author(s):  
Kechen Zhu ◽  
Martha Gledhill

Here we archive a protocol that can be used to determine competition between a siderophore (ferrioxamine B) and humic like binding sites that are present in marine DOM. We use the NICA-Donnan model to describe binding by humic like binding sites in DOM. Constants for Fe binding to marine DOM are taken from Zhu et al., (2021). Thermodynamic constants describing binding between major ions, iron and ferrioxamine B are taken from Schijf and Burns, (2016). References Schijf, J., Burns, S.M., 2016. Determination of the Side-Reaction Coefficient of Desferrioxamine B in Trace-Metal-Free Seawater. Front. Mar. Sci. 3, 117. https://doi.org/10.3389/fmars.2016.00117 Zhu, K., Birchill, A.J., Milne, A., Ussher, S.J., Humphreys, M.P., Carr, N., Mahaffey, C., Lohan, M.C., Achterberg, E.P., Gledhill, M., 2021a. Equilbrium calculations of iron speciation and apparent iron solubility in the Celtic Sea at ambient pH using the NICA-Donnan model. Mar. Chem


2021 ◽  
pp. 104038
Author(s):  
Kechen Zhu ◽  
Antony J. Birchill ◽  
Angela Milne ◽  
Simon Ussher ◽  
Matthew P. Humphreys ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiaodong Zheng ◽  
Huifang Chen ◽  
Qiufang Su ◽  
Caihong Wang ◽  
Guangli Sha ◽  
...  

Abstract Background Resveratrol (Res), a phytoalexin, has been widely reported to participate in plant resistance to fungal infections. However, little information is available on its role in abiotic stress, especially in iron deficiency stress. Malus baccata is widely used as apple rootstock in China, but it is sensitive to iron deficiency. Results In this study, we investigated the role of exogenous Res in M. baccata seedings under iron deficiency stress. Results showed that applying 100 μM exogenous Res could alleviate iron deficiency stress. The seedlings treated with Res had a lower etiolation rate and higher chlorophyll content and photosynthetic rate compared with the apple seedlings without Res treatment. Exogenous Res increased the iron content in the roots and leaves by inducing the expression of MbAHA genes and improving the H+-ATPase activity. As a result, the rhizosphere pH decreased, iron solubility increased, the expression of MbFRO2 and MbIRT1 was induced, and the ferric-chelated reductase activity was enhanced to absorb large amounts of Fe2+ into the root cells under iron deficiency conditions. Moreover, exogenous Res application increased the contents of IAA, ABA, and GA3 and decreased the contents of DHZR and BL for responding to iron deficiency stress indirectly. In addition, Res functioned as an antioxidant that strengthened the activities of antioxidant enzymes and thus eliminated reactive oxygen species production induced by iron deficiency stress. Conclusion Resveratrol improves the iron deficiency adaptation of M. baccata seedlings mainly by regulating iron absorption.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Akinori Ito ◽  
Ying Ye ◽  
Clarissa Baldo ◽  
Zongbo Shi

AbstractAerosols supply bioaccessible iron to marine biota which could affect climate through biogeochemical feedbacks. This paper review progresses in research on pyrogenic aerosol iron. Observations and laboratory experiments indicate that the iron solubility of pyrogenic aerosol can be considerably higher than lithogenic aerosol. Aerosol models highlight a significant contribution of pyrogenic aerosols (~20%) to the atmospheric supply of dissolved iron into the ocean. Some ocean models suggest a higher efficiency of pyrogenic iron in enhancing marine productivity than lithogenic sources. It is, however, challenging to quantitatively estimate its impact on the marine biogeochemical cycles under the changing air quality and climate.


2021 ◽  
Author(s):  
Xiaodong Zheng ◽  
Huifang Chen ◽  
Qiufang Su ◽  
Caihong Wang ◽  
Guangli Sha ◽  
...  

Abstract Resveratrol (Res), a phytoalexin, has been widely reported to participate in plant resistance to fungal infections. However, little information is available on its role in abiotic stress, especially in iron deficiency stress. Malus baccata is widely used as apple rootstock in China, but it is sensitive to iron deficiency. In this study, we investigated the role of exogenous Res in M. baccata seedings under iron deficiency stress. Results showed that applying 100 µmol exogenous Res could alleviate iron deficiency stress. The seedlings treated with Res had a lower etiolation rate and higher chlorophyll content and photosynthetic rate compared with the apple seedlings without Res treatment. Exogenous Res increased the iron content in the roots and leaves by inducing the expression of MbAHA genes and improving the H+-ATPase activity. As a result, the rhizosphere pH decreased, iron solubility increased, the expression of MbFRO2 and MbIRT1 was induced, and the ferric-chelated reductase activity was enhanced to absorb large amounts of Fe2+ into the root cells under iron deficiency conditions. Moreover, exogenous Res application increased the contents of IAA, ABA, and GA3 and decreased the contents of DHZR and BL for responding to iron deficiency stress indirectly. In addition, Res functioned as an antioxidant that strengthened the activities of antioxidant enzymes and thus eliminated reactive oxygen species production induced by iron deficiency stress. These findings are expected to enhance the application and examination of the physiological role of Res under iron deficiency stress in apples.


2021 ◽  
Vol 246 ◽  
pp. 118092
Author(s):  
Sergio Rodríguez ◽  
Joseph M. Prospero ◽  
Jessica López-Darias ◽  
María-Isabel García-Alvarez ◽  
Paquita Zuidema ◽  
...  

2020 ◽  
Vol 264 ◽  
pp. 114769 ◽  
Author(s):  
Yanhong Zhu ◽  
Weijun Li ◽  
Qiuhan Lin ◽  
Qi Yuan ◽  
Lei Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document