Asymptotic theory of ship motions in regular waves under shallow water conditions

Author(s):  
Y Vorobyov ◽  
M Stasenko
Author(s):  
Marc Vantorre ◽  
Erik Laforce ◽  
Katrien Eloot ◽  
Jan Richter ◽  
Jeroen Verwilligen ◽  
...  

A calculation tool has been developed for determining tidal windows for deep-drafted ships approaching and leaving the Belgian harbors according to probabilistic criteria. The calculations are based on a database containing response functions for the vertical motions in waves and squat data for a selection of representative ships. The database contains both results of model tests carried out in the Towing tank for maneuvers in shallow water – co-operation Flanders Hydraulics Research & Ghent University in Antwerp (Belgium), as well as calculated values. During the experiments, draft, trim, under keel clearance (7 to 20% of draft) and speed have been varied. The tests were performed in regular waves with lengths which are small compared to ship length, and in wave spectra that are typical for the Belgian coastal area. For given input data (ship characteristics, speed, tide, directional wave spectra, bottom, trajectory, current, departure time), the tool calculates the probability of bottom touch during the transit, so that a tidal window can be determined. Other restrictions, such as penetration into fluid mud layers and current, are taken into account as well.


1976 ◽  
Author(s):  
Alan C. McClure ◽  
R. Ray Nachlinger
Keyword(s):  

2013 ◽  
Vol 57 (03) ◽  
pp. 125-140
Author(s):  
Daniel A. Liut ◽  
Kenneth M. Weems ◽  
Tin-Guen Yen

A quasi-three-dimensional hydrodynamic model is presented to simulate shallow water phenomena. The method is based on a finite-volume approach designed to solve shallow water equations in the time domain. The nonlinearities of the governing equations are considered. The methodology can be used to compute green water effects on a variety of platforms with six-degrees-of-freedom motions. Different boundary and initial conditions can be applied for multiple types of moving platforms, like a ship's deck, tanks, etc. Comparisons with experimental data are discussed. The shallow water model has been integrated with the Large Amplitude Motions Program to compute the effects of green water flow over decks within a time-domain simulation of ship motions in waves. Results associated to this implementation are presented.


2003 ◽  
Vol 50 ◽  
pp. 105-114
Author(s):  
T. Hansen ◽  
A.T. Nielsen

Over 5000 trilobites have been collected from Lower Ordovician rocks exposed at the Lynna River in the Volkhov region, east of St. Petersburg, Russia. Bed-by-bed sampling has been carried out through the upper part of Volkhov Formation (top of Jeltiaki Member and the entire Frizy Member), the Lynna Formation and the basal part of the Obukhovo Formation. This interval, which is 7.5 metres thick, correlates with the upper part of the Arenig Series, and presumably even ranges into the very base of the Llanvirn. A preliminary biostratigraphical investigation of top Jeltiaki Member (BIIβ), Frizy Member (BIIγ) and basal Lynna Formation (BIIIα) reveals a rather continuous faunal turnover lacking sharp boundaries, and the biostratigraphical zonation (BIIβ–BIIIα) is primarily defined by the index trilobite taxa. The trilobite ranges are generally in agreement with the pattern described by Schmidt in 1907. The abundance ratio between Asaphus and the ptychopygids seems to be related to changes in relative sea level with Asaphus preferring the most shallow water conditions. A tentative interpretation of sea-level changes suggests an initial drowning at the base of BIIγ, immediately followed by a lowstand that in turn was succeeded by a moderate sea-level rise and then a significant fall. The last marks the BIIγ/BIIIα boundary. Correlation with sections in Scandinavia suggests that the basal part of BIIγ is strongly condensed.


1970 ◽  
Vol 14 (04) ◽  
pp. 317-328 ◽  
Author(s):  
E. O. Tuck

The problem discussed concerns small motions of a ship, in all six degrees of freedom, but at zero speed of advance, due to an incident wave system in shallow water of depth comparable with the ship's draft. The problem is completely formulated for an arbitrary ship, and is partially solved for the case when the ship is slender and the wavelength much greater than the water depth. Sample numerical computations of heave, pitch, and sway added mass and damping coefficients and the sway exciting force are presented.


Sign in / Sign up

Export Citation Format

Share Document