2020 ◽  
Vol 23 (02) ◽  
pp. 155-165
Author(s):  
Mohammed Mosa Jaafar ◽  
Salwa Khudadad Kalid ◽  
Mustafa Hasan Zaine khetam ◽  
Habeeb Rasooll

2016 ◽  
Vol 10 (1) ◽  
pp. 29-38
Author(s):  
Iza Saufani

2009 ◽  
Vol 72 (4) ◽  
pp. 856-859 ◽  
Author(s):  
HOIKYUNG KIM ◽  
YOUNGJUN LEE ◽  
LARRY R. BEUCHAT ◽  
BONG-JUNE YOON ◽  
JEE-HOON RYU

Sprouted vegetable seeds used as food have been implicated as sources of outbreaks of Salmonella and Escherichia coli O157:H7 infections. We profiled the microbiological quality of sprouts and seeds sold at retail shops in Seoul, Korea. Ninety samples of radish sprouts and mixed sprouts purchased at department stores, supermarkets, and traditional markets and 96 samples of radish, alfalfa, and turnip seeds purchased from online stores were analyzed to determine the number of total aerobic bacteria (TAB) and molds or yeasts (MY) and the incidence of Salmonella, E. coli O157:H7, and Enterobacter sakazakii. Significantly higher numbers of TAB (7.52 log CFU/g) and MY (7.36 log CFU/g) were present on mixed sprouts than on radish sprouts (6.97 and 6.50 CFU/g, respectively). Populations of TAB and MY on the sprouts were not significantly affected by location of purchase. Radish seeds contained TAB and MY populations of 4.08 and 2.42 log CFU/g, respectively, whereas populations of TAB were only 2.54 to 2.84 log CFU/g and populations of MY were 0.82 to 1.69 log CFU/g on alfalfa and turnip seeds, respectively. Salmonella and E. coli O157:H7 were not detected on any of the sprout and seed samples tested. E. sakazakii was not found on seeds, but 13.3% of the mixed sprout samples contained this potentially pathogenic bacterium.


2009 ◽  
Vol 72 (1) ◽  
pp. 37-42 ◽  
Author(s):  
GABRIELA PALCICH ◽  
CINTIA de MORAES GILLIO ◽  
LINA CASALE ARAGON-ALEGRO ◽  
FRANCO J. PAGOTTO ◽  
JEFFREY M. FARBER ◽  
...  

This study was the first conducted in Brazil to evaluate the presence of Enterobacter sakazakii in milk-based powdered infant formula manufactured for infants 0 to 6 months of age and to examine the conditions of formula preparation and service in three hospitals in São Paulo State, Brazil. Samples of dried and rehydrated infant formula, environments of milk kitchens, water, bottles and nipples, utensils, and hands of personnel were analyzed, and E. sakazakii and Enterobacteriaceae populations were determined. All samples of powdered infant formula purchased at retail contained E. sakazakii at <0.03 most probable number (MPN)/100 g. In hospital samples, E. sakazakii was found in one unopened formula can (0.3 MPN/100 g) and in the residue from one nursing bottle from hospital A. All other cans of formula from the same lot bought at a retail store contained E. sakazakii at <0.03 MPN/100 g. The pathogen also was found in one cleaning sponge from hospital B. Enterobacteriaceae populations ranged from 101 to 105 CFU/g in cleaning aids and <5 CFU/g in all formula types (dry or rehydrated), except for the sample that contained E. sakazakii, which also was contaminated with Enterobacteriaceae at 5 CFU/g. E. sakazakii isolates were not genetically related. In an experiment in which rehydrated formula was used as the growth medium, the temperature was that of the neonatal intensive care unit (25°C), and the incubation time was the average time that formula is left at room temperature while feeding the babies (up to 4 h), a 2-log increase in levels of E. sakazakii was found in the formula. Visual inspection of the facilities revealed that the hygienic conditions in the milk kitchens needed improvement. The length of time that formula is left at room temperature in the different hospitals while the babies in the neonatal intensive care unit are being fed (up to 4 h) may allow for the multiplication of E. sakazakii and thus may lead to an increased health risk for infants.


2006 ◽  
Vol 69 (3) ◽  
pp. 671-673 ◽  
Author(s):  
F. MRAMBA ◽  
A. BROCE ◽  
L. ZUREK

Enterobacter sakazakii is an opportunistic foodborne pathogen that causes meningitis, enterocolitis, and sepsis, primarily in immunocompromised infants. Previously, it was suggested that stable flies, Stomoxys calcitrans, were a vector or reservoir of this pathogen. In our study, by means of a culturing approach combined with 16S rDNA PCR–restriction fragment length polymorphism genotyping and sequencing, we screened 928 individual stable flies collected in Kansas and Florida. Two stable flies (0.2%) were positive for E. sakazakii. In addition, 411 (44%) stable flies carried bacteria-forming red colonies (presumably enterics) on a violet red bile glucose agar (mean count = 6.4 × 104 CFU per fly), and 120 (13%) stable flies carried fecal coliforms (mean count = 8.7 × 103 CFU per fly). Sequencing of 16S rDNA showed that enterics from violet red bile glucose agar were represented by several genera, including Escherichia, Shigella, Providencia, Enterobacter, Pantoea, Proteus, Serratia, and Morganella. Our study shows that stable flies carry bacteria typically present in animal manure (a developmental site of stable fly larvae), which indicates that the natural reservoir of E. sakazakii is the digestive tract or manure of domestic animals. The low prevalence of E. sakazakii associated with stable flies suggests that stable flies do not play a major role as a reservoir or vector of this pathogen.


2007 ◽  
Vol 90 (3) ◽  
pp. 356-358 ◽  
Author(s):  
B Bar-Oz ◽  
A Preminger ◽  
O Peleg ◽  
C Block ◽  
I Arad

2008 ◽  
Vol 74 (19) ◽  
pp. 5913-5917 ◽  
Author(s):  
N. Mullane ◽  
B. Healy ◽  
J. Meade ◽  
P. Whyte ◽  
P. G. Wall ◽  
...  

ABSTRACT The microbial contamination of air filters and possible links to contaminated product in a powdered milk protein-processing facility were investigated. Over a 10-month period, seven air filters, the environment, and powdered product were analyzed for the presence of Cronobacter spp. The effects of air filter installation, maintenance, and subsequent dissemination of Cronobacter were investigated. A total of 30 isolates were characterized by pulsed-field gel electrophoresis (PFGE). PFGE revealed the presence of three clonal populations distributed throughout the manufacturing site. This study highlights the need for proper installation of air filters to limit the dissemination of microorganisms into processing sites.


2009 ◽  
Vol 72 (5) ◽  
pp. 1107-1111 ◽  
Author(s):  
SUN-YOUNG LEE ◽  
SO-YOUNG GWON ◽  
SEUNG-JU KIM ◽  
BO KYUNG MOON

The antimicrobial effects of green tea and rosemary added to foods as antagonists to foodborne pathogens were determined in laboratory media and oriental-style rice cakes. The growth of each pathogen (Bacillus cereus, Salmonella, Typhimurium, Enterobacter sakazakii, Escherichia coli O157:H7, Staphylococcus aureus, and Listeria monocytogenes) in tryptic soy broth or rice cake with or without addition of green tea or rosemary leaf powders before autoclaving or cooking, respectively, was investigated after inoculation. The addition of 1% green tea or rosemary produced similar results for inhibiting the growth of pathogens in tryptic soy broth. However, green tea was more effective than rosemary for inhibiting the growth of L. monocytogenes. Both botanicals had inhibitory effects against all pathogens tested in this study. Green tea was particularly effective against B. cereus, S. aureus, and L. monocytogenes, and rosemary was strongly inhibitory against B. cereus and S. aureus. The addition of 1 or 3% green tea or rosemary to rice cakes did not significantly reduce total aerobic counts; however, levels of B. cereus and S. aureus were significantly reduced in rice cakes stored for 3 days at room temperature (22°C). The order of antimicrobial activities against B. cereus in rice cake was 1% rosemary < 1% green tea < 3% rosemary = 3% green tea. These results indicate that the use of natural plant materials such as green tea and rosemary could improve the microbial quality of foods in addition to their functional properties.


Author(s):  
B.D. Tall ◽  
C.J. Grim ◽  
A.A. Franco ◽  
K.G. Jarvis ◽  
L. Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document