Modulation and Analysis of Structure and Function of the Inner Mitochondrial Membrane Through the Application of Phospholipid Enrichment and Membrane Fusion Techniques

2019 ◽  
pp. 803-844
Author(s):  
Brad Chazotte ◽  
Charles R. Hackenbrock
Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Dhanendra Tomar ◽  
Manfred Thomas ◽  
Joanne Garbincius ◽  
Devin Kolmetzky ◽  
Oniel Salik ◽  
...  

Background: MICU1 is an EF-hand domain containing Ca 2+ -sensor regulating the mitochondrial Ca 2+ uniporter channel and mitochondrial Ca 2+ uptake. MICU1-null mouse and fly models display perinatal lethality with disorganized mitochondrial architecture. Interestingly, these phenotypes are distinct from other mtCU loss-of-function models ( MCU, MICU2, EMRE, MCUR1 ) and thus are likely not explained solely by changes in matrix Ca 2+ content. Using size-exclusion proteomics and co-immunofluorescence, we found that MICU1 localizes to mitochondrial complexes lacking MCU. These observations suggest that MICU1 may have additional cellular functions independent of the MCU. Methods: Biotin-based proximity labeling and proteomics, protein biochemistry, live-cell Ca 2+ imaging, electron microscopy, confocal and super-resolution imaging were utilized to identify and validate MICU1 novel functions. Results: The expression of a MICU1-BioID2 fusion protein in MCU +/+ and MCU -/- cells allowed the identification of the total vs. MCU-independent MICU1 interactome. LC-MS analysis of purified biotinylated proteins identified the mitochondrial contact site and cristae organizing system (MICOS) components Mitofilin (MIC60) and Coiled-coil-helix-coiled-coil helix domain containing 2 (CHCHD2) as MCU independent novel MICU1 interactors. We demonstrate that MICU1 is essential for proper organization of the MICOS complex and that MICU1 ablation results in altered cristae organization, mitochondrial ultrastructure, mitochondrial membrane dynamics, membrane potential, and cell death signaling. We hypothesize that MICU1 is a MICOS Ca 2+ - sensor since perturbing MICU1 is sufficient to modulate cytochrome c release independent of Ca 2+ uptake across the inner mitochondrial membrane. Conclusions: Here, we provide the first experimental evidence of an intermembrane space Ca 2+ - sensor regulating mitochondrial membrane dynamics, independent of changes in matrix Ca 2+ content. This study provides a novel paradigm to understand Ca 2+ -dependent regulation of mitochondrial structure and function and may help explain the mitochondrial remodeling reported to occur in numerous disease states.


1977 ◽  
Vol 72 (3) ◽  
pp. 687-694 ◽  
Author(s):  
T Kuroiwa ◽  
S Kawano ◽  
M Hizume

The fine structure of mitochondria and mitochondrial nucleoids in exponentially growing Physarum polycephalum was studied at various periods throughout the mitochondrial division cycle by light and electron microscopy. The mitochondrial nucleoid elongates lingitudinally while the mitochondrion increases in size. When the nucleoid reaches a length of approximately 1.5 mum the mitochondrial membrane invaginates at the center of the mitochondrion and separates the mitochondrial contents. However, the nucleoid does not divide even when the mitochondrial sections are connected by a very narrow bridge. Just before division of the mitochondrion, the nucleoid divides by constriction of the limiting membrane of the dividing mitochondrion. After division, one end of the nucleoid appears to be associated with the inner mitochondrial membrane. The nucleoid then again becomes situated in the center of the mitochondrion before repeating these same processes.


2001 ◽  
Vol 29 (4) ◽  
pp. 436-441 ◽  
Author(s):  
D. Forsha ◽  
C. Church ◽  
P. Wazny ◽  
R. O. Poyton

The assembly of cytochrome c oxidase in the inner mitochondrial membranes of eukaryotic cells requires the protein products of a large number of nuclear genes. In yeast, some of these act globally and affect the assembly of several respiratory-chain protein complexes, whereas others act in a cytochrome c oxidase-specific fashion. Many of these yeast proteins have human counterparts, which when mutated lead to energy-related diseases. One of these proteins, Pet100p, is a novel molecular chaperone that functions to incorporate a subcomplex containing cytochrome c oxidase subunits VII, VIIa and VIII into holo-(cytochrome c oxidase). Here we report the topological disposition of Pet100p in the inner mitochondrial membrane and show that its C-terminal domain is essential for its function as a cytochrome c oxidase-specific ‘assembly facilitator’.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Ying Song ◽  
Wei Ding ◽  
Yan Xiao ◽  
Kong-jun Lu

Mitochondrion, an organelle with two layers of membrane, is extremely vital to eukaryotic cell. Its major functions are energy center and apoptosis censor inside cell. The intactness of mitochondrial membrane is important to maintain its structure and function. Mitophagy is one kind of autophagy. In recent years, studies of mitochondria have shown that mitophagy is regulated by various factors and is an important regulation mechanism for organisms to maintain their normal state. In addition, abnormal mitophagy is closely related to several neurodegenerative diseases and tumor. However, the related signal pathway and its regulation mechanism still remain unclear. As a result, summarizing the progress of mitophagy and its related pathogenic mechanism not only helps to reveal the complicated molecular mechanism, but also helps to find a new target to treat the related diseases.


2018 ◽  
Vol 9 (3) ◽  
Author(s):  
Philip Böhler ◽  
Fabian Stuhldreier ◽  
Ruchika Anand ◽  
Arun Kumar Kondadi ◽  
David Schlütermann ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2147
Author(s):  
Bruno Seitaj ◽  
Felicia Maull ◽  
Li Zhang ◽  
Verena Wüllner ◽  
Christina Wolf ◽  
...  

The Transmembrane Bax Inhibitor-1 motif (TMBIM)-containing protein family is evolutionarily conserved and has been implicated in cell death susceptibility. The only member with a mitochondrial localization is TMBIM5 (also known as GHITM or MICS1), which affects cristae organization and associates with the Parkinson’s disease-associated protein CHCHD2 in the inner mitochondrial membrane. We here used CRISPR-Cas9-mediated knockout HAP1 cells to shed further light on the function of TMBIM5 in physiology and cell death susceptibility. We found that compared to wild type, TMBIM5-knockout cells were smaller and had a slower proliferation rate. In these cells, mitochondria were more fragmented with a vacuolar cristae structure. In addition, the mitochondrial membrane potential was reduced and respiration was attenuated, leading to a reduced mitochondrial ATP generation. TMBIM5 did not associate with Mic10 and Mic60, which are proteins of the mitochondrial contact site and cristae organizing system (MICOS), nor did TMBIM5 knockout affect their expression levels. TMBIM5-knockout cells were more sensitive to apoptosis elicited by staurosporine and BH3 mimetic inhibitors of Bcl-2 and Bcl-XL. An unbiased proteomic comparison identified a dramatic downregulation of proteins involved in the mitochondrial protein synthesis machinery in TMBIM5-knockout cells. We conclude that TMBIM5 is important to maintain the mitochondrial structure and function possibly through the control of mitochondrial biogenesis.


2018 ◽  
Vol 62 (3) ◽  
pp. 341-360 ◽  
Author(s):  
Lisa Tilokani ◽  
Shun Nagashima ◽  
Vincent Paupe ◽  
Julien Prudent

Mitochondria are highly dynamic organelles undergoing coordinated cycles of fission and fusion, referred as ‘mitochondrial dynamics’, in order to maintain their shape, distribution and size. Their transient and rapid morphological adaptations are crucial for many cellular processes such as cell cycle, immunity, apoptosis and mitochondrial quality control. Mutations in the core machinery components and defects in mitochondrial dynamics have been associated with numerous human diseases. These dynamic transitions are mainly ensured by large GTPases belonging to the Dynamin family. Mitochondrial fission is a multi-step process allowing the division of one mitochondrion in two daughter mitochondria. It is regulated by the recruitment of the GTPase Dynamin-related protein 1 (Drp1) by adaptors at actin- and endoplasmic reticulum-mediated mitochondrial constriction sites. Drp1 oligomerization followed by mitochondrial constriction leads to the recruitment of Dynamin 2 to terminate membrane scission. Inner mitochondrial membrane constriction has been proposed to be an independent process regulated by calcium influx. Mitochondrial fusion is driven by a two-step process with the outer mitochondrial membrane fusion mediated by mitofusins 1 and 2 followed by inner membrane fusion, mediated by optic atrophy 1. In addition to the role of membrane lipid composition, several members of the machinery can undergo post-translational modifications modulating these processes. Understanding the molecular mechanisms controlling mitochondrial dynamics is crucial to decipher how mitochondrial shape meets the function and to increase the knowledge on the molecular basis of diseases associated with morphology defects. This article will describe an overview of the molecular mechanisms that govern mitochondrial fission and fusion in mammals.


Sign in / Sign up

Export Citation Format

Share Document