The methodology of assessing groundwater vulnerability applied to Hydrogeological Map of Poland scale 1:50 000

Author(s):  
P. Herbich ◽  
M. Woźnicka ◽  
M. Nidental
2016 ◽  
Vol 5 (1) ◽  
pp. 1561-1579 ◽  
Author(s):  
Mohamed R. El Tahlawi ◽  
◽  
Mohamed Abo-El Kassem ◽  
Gamal Y. Baghdadi ◽  
Hussein A. Saleem ◽  
...  

2007 ◽  
Vol 2 (3) ◽  
Author(s):  
M. V. Civita ◽  
M. De Maio ◽  
A. Fiorucci

In the early 1980's the Italian scientific community, together with a number of institutional decision-makers, realized how urgent it was to protect natural and environmental resources. They agreed that an adequate level of scientifically organized knowledge allows the accurate planning and development of environmental systems through management and direction of the actual development process, without hindering it. Since the special project was first set up in 1984, as part of the GNDCI-CNR (National Group for the Defence against Hydrogeologic Disasters, of the Italian National Council of Research) scientific context, it has been the cardinal point of Research Line 4 “Assessment of Aquifer Vulnerability”. The problem of groundwater contamination was examined in this project for the very first time in Italy in an organic and extensive manner as a key for forecasting and prevention purposes. The Italian approaches to assessing and mapping groundwater vulnerability to contamination are essentially based on two main methodologies:- The GNDCI Basic Method a HCS (Hazard Contamination Source) type approach that can be used for any type of Italian hydrogeologic situation, even where there is a limited amount of data. A unified legend and symbols are also defined for each hydrogeologic level.- The SINTACS [Soggiacenza (depth to groundwater); Infiltrazione (effective infiltration); Non saturo (unsaturated zone attenuation capacity); Tipologia della copertura (soil/overburden attenuation capacity); Acquifero (saturated zone characteristics); Conducibilità (hydraulic conductivity); Superficie topografica (Slope)] method, a PCSM (Point Count System Model) developed for use prevalently in areas with good data base coverage. The methodological approaches described in this paper now make up the Italian standard which has been set in the recent very important Italian Law (152/99) and which has now been ratified in the national guidelines produced by ANPA, the Italian National Agency for Environment Protection. In this paper the structure of the Research Line, the progress obtained by the 21 Research units (over 100 researchers) in 20 years of activity, the results gained etc. are briefly highlighted.


2021 ◽  
Vol 11 (7) ◽  
pp. 3154
Author(s):  
Francisco Javier Alcalá ◽  
Pedro Martínez-Pagán ◽  
Maria Catarina Paz ◽  
Manuel Navarro ◽  
Jaruselsky Pérez-Cuevas ◽  
...  

This paper conceptualizes and evaluates the groundwater resource in a coastal urban area hydrologically influenced by peri-urban irrigation agriculture. Adra town in southern Spain was the case study chosen to evaluate the groundwater resource contributed from the northern steep urban sector (NSUS) to the southern flat urban sector (SFUS), which belongs to the Adra River Delta Groundwater Body (ARDGB). The methodology included (1) geological and hydrogeological data compilation; (2) thirteen Multichannel Analysis of Surface Waves (MASW), and eight Ground Penetrating Radar (GPR) profiles to define shallow geological structures and some hydrogeological features; (3) hydrogeological surveys for aquifer hydraulic definition; (4) conceptualization of the hydrogeological functioning; and (5) the NSUS groundwater resource evaluation. All findings were integrated to prepare a 1:5000 scale hydrogeological map and cross-sections. Ten hydrogeological formations were defined, four of them (Paleozoic weathered bedrock, Pleistocene littoral facies, Holocene colluvial, and anthropogenic filling) in the NSUS contributing to the SFUS. The NSUS groundwater discharge and recharge are, respectively, around 0.28 Mm3 year–1 and 0.31 Mm3 year–1, and the actual groundwater storage is around 0.47 Mm3. The groundwater renewability is high enough to guarantee a durable small exploitation for specific current and future urban water uses which can alleviate the pressure on the ARDGB.


2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Ratha Phok ◽  
Nandalal Kosgallana Duwage Wasantha ◽  
Weerakoon Sumana Bandara ◽  
Pitawala Herath Mudiyanselage Thalapitiye Ge ◽  
Dharmagunawardhane Hingure Arachchilage

AbstractGroundwater vulnerability assessment has become a crucial step in successfully protecting groundwater against pollution. An attempt of this study has been made to evaluate groundwater contamination risk using intrinsic vulnerability and land-uses in Vanathavillu, Kalpitiya and Katana area in Sri Lanka, using coupled DRASTIC with GIS as feasible methodology. The findings reveal that the groundwater in the areas under study falls under very low to high contamination risk. The higher risk of contamination has been identified in most of the Kalpitiya (about 82%) with the moderate along the beach in the west and next to Puttalam lagoon in the northeast and southeast. This is mainly due to pollution risk inherent with intense vegetable cultivation, over pumping, shallow groundwater tables and permeable sandy soil. Vanathavillu is under very low to moderate contamination risk, in which the moderate risk (about 13%) has especially been found the center, central southwest and west of the area. The relative less deep groundwater tables, possible seepage from the underlying limestone aquifer and less permeable red earth soil could be cause for the moderate risk in the area. Furthermore, results show that the Katana has low to moderately high groundwater contamination risk. Nitrate has a good agreement with the different pollution risk classes and that nitrate can be used as an indicator of aquifer degradation inherent with land-use activities in the coastal areas. Groundwater quality monitoring network should be set up to minimize the anthropogenic acts, particularly in high and moderate contamination risk zones.


Sign in / Sign up

Export Citation Format

Share Document