scholarly journals Using intrinsic vulnerability and anthropogenic impacts to evaluate and compare groundwater risk potential at northwestern and western coastal aquifers of Sri Lanka through coupling DRASTIC and GIS approach

2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Ratha Phok ◽  
Nandalal Kosgallana Duwage Wasantha ◽  
Weerakoon Sumana Bandara ◽  
Pitawala Herath Mudiyanselage Thalapitiye Ge ◽  
Dharmagunawardhane Hingure Arachchilage

AbstractGroundwater vulnerability assessment has become a crucial step in successfully protecting groundwater against pollution. An attempt of this study has been made to evaluate groundwater contamination risk using intrinsic vulnerability and land-uses in Vanathavillu, Kalpitiya and Katana area in Sri Lanka, using coupled DRASTIC with GIS as feasible methodology. The findings reveal that the groundwater in the areas under study falls under very low to high contamination risk. The higher risk of contamination has been identified in most of the Kalpitiya (about 82%) with the moderate along the beach in the west and next to Puttalam lagoon in the northeast and southeast. This is mainly due to pollution risk inherent with intense vegetable cultivation, over pumping, shallow groundwater tables and permeable sandy soil. Vanathavillu is under very low to moderate contamination risk, in which the moderate risk (about 13%) has especially been found the center, central southwest and west of the area. The relative less deep groundwater tables, possible seepage from the underlying limestone aquifer and less permeable red earth soil could be cause for the moderate risk in the area. Furthermore, results show that the Katana has low to moderately high groundwater contamination risk. Nitrate has a good agreement with the different pollution risk classes and that nitrate can be used as an indicator of aquifer degradation inherent with land-use activities in the coastal areas. Groundwater quality monitoring network should be set up to minimize the anthropogenic acts, particularly in high and moderate contamination risk zones.

Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2492 ◽  
Author(s):  
Tien-Duc Vu ◽  
Chuen-Fa Ni ◽  
Wei-Ci Li ◽  
Minh-Hoang Truong

The groundwater vulnerability (GV) assessment for contamination is an effective technique for the planning, policy, and decision-making, as well as for sustainable groundwater resource protection and management. The GV depends strongly on local hydrogeological settings and land-use conditions that may vary in response to the activities of agricultural development. In this study, a modified DRASTIC model, which employs an additional factor of land use coupled with the analytic hierarchy process (AHP) theory, was used to quantify the spatial and temporal variation of GV and groundwater contamination risk in the Pingtung groundwater basin. The results show that the GV slightly decreased due to the decrease in agricultural areas under the change of land use over two decades (1995–2017). The yearly changes or a shorter period of observations incorporated with the accurate land-use map in DRASTIC parameters could improve GV maps to obtain a better representation of site-specific conditions. Meanwhile, the maps of yearly contamination risk indicated that the counties of Jiuru and Ligang are at high risk of nitrate pollution since 2016. In other agriculture-dominated regions such as Yanpu, Changzhi, and Gaoshu in the Pingtung groundwater basin, the climate conditions influence less the temporal variations of groundwater contamination risk. The results of this study are expected to support policy-makers to adopt the strategies of sustainable development for groundwater resources in local areas.


2017 ◽  
Vol 2 (1) ◽  
pp. 36 ◽  
Author(s):  
Thilavanh Souvannachith ◽  
Doni Prakasa Eka Putra ◽  
Heru Hendrayana

Groundwater resource is an essential for various purposes in Bantul district, Yogyakarta Special Province, Indonesia, especially on Poncosari village where the water supply are depending on shallow groundwater resources. On this village, most of the houses using dug wells to provide their water needs and applying inappropriate on-site sanitation system, however there are also difference land uses. This condition increase the hazard of groundwater contamination by fecal coli bacteria and nitrate. Therefore, this research aims in term of three main objectives: firstly, to know the level of nitrate concentration in groundwater, secondly, to assess groundwater vulnerability and thirdly, to assess the level of groundwater contaminant hazard. Hydrogeology observation was conducted and 47 water samples (44 groundwater samples and 3 surface water samples) were collected from different land use type and analyze for nitrate (NO 3) content. Methodology used to assess the groundwater vulnerability was Simple Vertical Vulnerability method and the groundwater contamination hazard built based on the combination of groundwater vulnerability and nitrate loading potential map. Results show that groundwater concentrations of nitrate range from 0.09–74.80 mg/L and the highest concentration found in the settlement area. Assessment of groundwater vulnerability reveals three areas of moderate, moderate high and high classes of vulnerability due to shallow groundwater and the sandy dominated overlying material in the study area. Combination of groundwater vulnerability and nitrate loading potential map indicated that groundwater contaminant hazard of nitrate range from low to high class. High class of hazard located in the settlement area, and low hazard of nitrate contamination found in the irrigated rice field area


2021 ◽  
Vol 30 (2) ◽  
pp. 355-364
Author(s):  
Ingershal G. Ravindranath ◽  
Venugopal Thirukumaran

Groundwater is the principle source of drinking water and protection of groundwater quality is an important issue meets out the increasing population and agricultural practices. The present research an attempt made to develop DRASTIC model to understand the groundwater contamination risk in Ponnaiyar River Basin (PRB), Tamil Nadu, India using geographical information system (GIS). GIS have been shown to be useful tools for assessing groundwater pollution hazard. According to Central Ground Water Board reports the PRB categorized by semi-critical groundwater development. In view of the extensive reliance on this basin, contamination of PRB groundwater became an alarming issue. To assess groundwater contamination risk in the PRB the parameters such as Groundwater depth, Net recharge, Aquifer media, Soil media, Topography, Impact of vadose zone and Hydraulic conductivity were selected. Based on the importance of groundwater contamination all the parameters were assigned to rank and weights. Then all the themes were integrated and classified into five categories such as very low (9.33%), low (26.54%), moderate (34.77%), high (22.38%) and very high (6.98) risk. To validate the DRASTIC model, nitrate concentration was selected and found that it is 81.53% accurate which reflects that, DRASTIC model is appropriate to understand groundwater pollution risk assessment. In the GSB groundwater is contaminated mainly due to extensive use of groundwater extraction for agriculture purpose. Groundwater risk index assessment is an effective tool for groundwater management in the PRB.


2007 ◽  
Vol 2 (3) ◽  
Author(s):  
M. V. Civita ◽  
M. De Maio ◽  
A. Fiorucci

In the early 1980's the Italian scientific community, together with a number of institutional decision-makers, realized how urgent it was to protect natural and environmental resources. They agreed that an adequate level of scientifically organized knowledge allows the accurate planning and development of environmental systems through management and direction of the actual development process, without hindering it. Since the special project was first set up in 1984, as part of the GNDCI-CNR (National Group for the Defence against Hydrogeologic Disasters, of the Italian National Council of Research) scientific context, it has been the cardinal point of Research Line 4 “Assessment of Aquifer Vulnerability”. The problem of groundwater contamination was examined in this project for the very first time in Italy in an organic and extensive manner as a key for forecasting and prevention purposes. The Italian approaches to assessing and mapping groundwater vulnerability to contamination are essentially based on two main methodologies:- The GNDCI Basic Method a HCS (Hazard Contamination Source) type approach that can be used for any type of Italian hydrogeologic situation, even where there is a limited amount of data. A unified legend and symbols are also defined for each hydrogeologic level.- The SINTACS [Soggiacenza (depth to groundwater); Infiltrazione (effective infiltration); Non saturo (unsaturated zone attenuation capacity); Tipologia della copertura (soil/overburden attenuation capacity); Acquifero (saturated zone characteristics); Conducibilità (hydraulic conductivity); Superficie topografica (Slope)] method, a PCSM (Point Count System Model) developed for use prevalently in areas with good data base coverage. The methodological approaches described in this paper now make up the Italian standard which has been set in the recent very important Italian Law (152/99) and which has now been ratified in the national guidelines produced by ANPA, the Italian National Agency for Environment Protection. In this paper the structure of the Research Line, the progress obtained by the 21 Research units (over 100 researchers) in 20 years of activity, the results gained etc. are briefly highlighted.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1288
Author(s):  
Husam Musa Baalousha ◽  
Bassam Tawabini ◽  
Thomas D. Seers

Vulnerability maps are useful for groundwater protection, water resources development, and land use management. The literature contains various approaches for intrinsic vulnerability assessment, and they mainly depend on hydrogeological settings and anthropogenic impacts. Most methods assign certain ratings and weights to each contributing factor to groundwater vulnerability. Fuzzy logic (FL) is an alternative artificial intelligence tool for overlay analysis, where spatial properties are fuzzified. Unlike the specific rating used in the weighted overlay-based vulnerability mapping methods, FL allows more flexibility through assigning a degree of contribution without specific boundaries for various classes. This study compares the results of DRASTIC vulnerability approach with the FL approach, applying both on Qatar aquifers. The comparison was checked and validated against a numerical model developed for the same study area, and the actual anthropogenic contamination load. Results show some similarities and differences between both approaches. While the coastal areas fall in the same category of high vulnerability in both cases, the FL approach shows greater variability than the DRASTIC approach and better matches with model results and contamination load. FL is probably better suited for vulnerability assessment than the weighted overlay methods.


2020 ◽  
Vol 115 ◽  
pp. 106424 ◽  
Author(s):  
Daniele la Cecilia ◽  
Giovanni M. Porta ◽  
Fiona H.M. Tang ◽  
Monica Riva ◽  
Federico Maggi

2018 ◽  
Vol 10 (1) ◽  
pp. 64-78 ◽  
Author(s):  
Balázs Trásy ◽  
Tamás Garamhegyi ◽  
Péter Laczkó-Dobos ◽  
József Kovács ◽  
István Gábor Hatvani

Abstract The efficient operation of shallow groundwater (SGW) monitoring networks is crucial to water supply, in-land water protection, agriculture and nature conservation. In the present study, the spatial representativity of such a monitoring network in an area that has been thoroughly impacted by anthropogenic activity (river diversion/damming) is assessed, namely the Szigetköz adjacent to the River Danube. The main aims were to assess the spatial representativity of the SGW monitoring network in different discharge scenarios, and investigate the directional characteristics of this representativity, i.e. establish whether geostatistical anisotropy is present, and investigate how this changes with flooding. After the subtraction of a spatial trend from the time series of 85 shallow groundwater monitoring wells tracking flood events from 2006, 2009 and 2013, variography was conducted on the residuals, and the degree of anisotropy was assessed to explore the spatial autocorrelation structure of the network. Since the raw data proved to be insufficient, an interpolated grid was derived, and the final results were scaled to be representative of the original raw data. It was found that during floods the main direction of the spatial variance of the shallow groundwater monitoring wells alters, from perpendicular to the river to parallel with it for over a period of about two week. However, witht the passing of the flood, this returns to its original orientation in ~2 months. It is likely that this process is related first to the fast removal of clogged riverbed strata by the flood, then to their slower replacement. In addition, the study highlights the importance of assessing the direction of the spatial autocorrelation structure of shallow groundwater monitoring networks, especially if the aim is to derive interpolated maps for the further investigation or modeling of flow.


Sign in / Sign up

Export Citation Format

Share Document