Superpave Gyratory Compaction

2020 ◽  
pp. 277-299
Author(s):  
Ghazi G. Al-Khateeb
Keyword(s):  
2019 ◽  
Author(s):  
Teng Man

The compaction of asphalt mixture is crucial to the mechanical properties and the maintenance of the pavement. However, the mix design, which based on the compaction properties, remains largely on empirical data. We found difficulties to relate the aggregate size distribution and the asphalt binder properties to the compaction behavior in both the field and laboratory compaction of asphalt mixtures. In this paper, we would like to propose a simple hybrid model to predict the compaction of asphalt mixtures. In this model, we divided the compaction process into two mechanisms: (i) visco-plastic deformation of an ordered thickly-coated granular assembly, and (ii) the transition from an ordered system to a disordered system due to particle rearrangement. This model could take into account both the viscous properties of the asphalt binder and grain size distributions of the aggregates. Additionally, we suggest to use the discrete element method to understand the particle rearrangement during the compaction process. This model is calibrated based on the SuperPave gyratory compaction tests in the pavement lab. In the end, we compared the model results to experimental data to show that this model prediction had a good agreement with the experiments, thus, had great potentials to be implemented to improve the design of asphalt mixtures.


Author(s):  
Kyle Hoegh ◽  
Trevor Steiner ◽  
Eyoab Zegeye Teshale ◽  
Shongtao Dai

Available methods for assessing hot-mix-asphalt pavements are typically restricted to destructive methods such as coring that damage the pavement and are limited in coverage. Recently, density profiling systems (DPS) have become available with the capability of measuring asphalt compaction continuously, giving instantaneous measurements a few hundred feet behind the final roller of the freshly placed pavement. Further developments of the methods involved with DPS processing have allowed for coreless calibration by correlating dielectric measurements with asphalt specimens fabricated at variable air void contents using superpave gyratory compaction. These developments make DPS technology an attractive potential tool for quality control because of the real-time nature of the results, and quality assurance because of the ability to measure a more statistically significant amount of data as compared with current quality assurance methods such as coring. To test the viability of these recently developed methods for implementation, multiple projects were selected for field trials. Each field trial was used to assess the coreless calibration prediction by comparing with field cores where dielectric measurements were made. Ground truth core validation on each project showed the reasonableness of the coreless calibration method. The validated dielectric to air void prediction curves allowed for assessment of the tested pavements in relation to as-built characteristics, with the DPS providing the equivalent of approximately 100,000 cores per mile. Statistical measures were used to demonstrate how DPS can provide a comprehensive asphalt compaction evaluation that can be used to inform construction-related decisions and has potential as a future quality assurance tool.


2021 ◽  
Vol 33 (6) ◽  
pp. 04021107
Author(s):  
Xuepeng Cao ◽  
Cuihong Zhang ◽  
Shuaihua Tuo ◽  
Yao Fu ◽  
Tongchao Zhi ◽  
...  

Author(s):  
H. Barry Takallou ◽  
Hussain U. Bahia ◽  
Dario Perdomo ◽  
Robert Schwartz

The effect of different mixing times and mixing temperatures on the performance of asphalt-rubber binder was evaluated. Four different types of asphalt-rubber binders and neat asphalt were characterized using the Strategic Highway Research Program (SHRP) binder method tests. Subsequently, mix designs were carried out using both the SHRP Levels I and II mix design procedures, as well as the traditional Marshall mix design scheme. Additionally, performance testing was carried out on the mixtures using the Superpave repetitive simple shear test at constant height (RSST-CH) to evaluate the resistance to permanent deformation (rutting) of the rubberized asphalt mixtures. Also, six rectangular beams were subjected to repeated bending in the fatigue tester at different microstrain levels to establish rubberized asphalt mixtures’ resistance to fatigue cracking under repeated loadings. The results indicate that the Superpave mix design produced asphalt-rubber contents that are significantly higher than values used successfully in the field. Marshall-used gyratory compaction could not produce the same densification trends. Superpave mixture analysis testing (Level II) was used successfully for rubberized asphalt mixtures. Results clearly indicated that the mixture selected exhibited acceptable rutting and fatigue behavior for typical new construction and for overlay design. Few problems were encountered in running the Superpave models. The results of the RSST-CH indicate that rubber-modified asphalt concrete meets the criteria for a maximum rut depth of 0.5 in.; and more consistent results were measured for fatigue performance analysis using the repeated four-point bending beam testing (Superpave optional torture testing). The cycles to failure were approximately 26,000 at 600 microstrain.


2021 ◽  
pp. 91-97
Author(s):  
A. Margaritis* ◽  
T. Tanghe ◽  
J. De Visscher ◽  
S. Vansteenkiste ◽  
A. Vanelstraete

Sign in / Sign up

Export Citation Format

Share Document