Spin Electronics

Author(s):  
Lee Kyung-Jin ◽  
Lim Sang Ho
Keyword(s):  
1997 ◽  
Vol 28 (1) ◽  
pp. 14-17 ◽  
Author(s):  
B. Doudin ◽  
J-Ph. Ansermet
Keyword(s):  

2020 ◽  
Vol 6 (3) ◽  
pp. 113-123
Author(s):  
Arnold S. Borukhovich

The results of the creation of a high-temperature spin injector based on EuO: Fe composite material are discussed. Their magnetic, electrical, structural and resonance parameters are given in a wide range of temperatures and an external magnetic field. A model calculation of the electronic spectrum of the solid solution Eu–Fe–O, responsible for the manifestation of the outstanding properties of the composite, is performed. The possibility of creating semiconductor spin electronics devices capable of operating at room temperature is shown.


Author(s):  
Tai Ma ◽  
Jia Wang ◽  
Xu Li ◽  
Min Pu

Two-dimensional (2D) materials with robust ferromagnetism properties have high potentials for application in the field of spintronics. However, extensively pursued 2D sheets, including pure graphene, monolayer BN, and layered transition metal dichalcogenides, are either nonmagnetic or weakly magnetic. The elastic, electronic and magnetic properties of monolayer CrN are calculated using the plane wave pseudo potential method based on first-principles density function theory. Upon determining through calculation that the structure of the monolayer CrN nanosheet is stable, its layer modulus [Formula: see text] shows that its strain resistance is stronger than that of graphene. Through strain analysis, materials with a monolayer CrN type of structure can be obtained. It is determined that 10% of the change in equilibrium area is still applicable to the 2D EOS, showing that this structure is quite stable. The spin-polarized electronic band structure is also calculated under different plane symmetry strains. The plane strain can be used to effectively adjust the metallic and magnetic properties of the material. Analyses of the band structure and density of states reveal that this material is half-metallic, where the origin of the ferromagnetism is related to [Formula: see text]–[Formula: see text] exchange interactions between the Cr and N atoms. Monolayer CrN has semimetallic properties and strong ferromagnetic (FM) properties. The FM effect can enhance the stability of the material. The results show that monolayer CrN is a semimetallic material with good elastic properties and a strong FM property. This material is therefore expected to have good application rospects in the field of spin electronics.


Author(s):  
Takahide Kubota ◽  
Takeshi Seki ◽  
Koki Takanashi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document