A guideline for ageing management of post-tensioning tendons for dam owners

Author(s):  
P. Lundqvist ◽  
C. Bernstone ◽  
A. Marklund ◽  
C-O. Nilsson
2014 ◽  
Author(s):  
Josée Bastien ◽  
Werner Brand ◽  
Antonio Caballero ◽  
Gordon Clark ◽  
Sanjay Dandekar ◽  
...  
Keyword(s):  

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2961
Author(s):  
Moein Rezapour ◽  
Mehdi Ghassemieh ◽  
Masoud Motavalli ◽  
Moslem Shahverdi

This study presents a new way to improve masonry wall behavior. Masonry structures comprise a significant part of the world’s structures. These structures are very vulnerable to earthquakes, and their performances need to be improved. One way to enhance the performances of such types of structures is the use of post-tensioning reinforcements. In the current study, the effects of shape memory alloy as post-tensioning reinforcements on originally unreinforced masonry walls were investigated using finite element simulations in Abaqus. The developed models were validated based on experimental results in the literature. Iron-based shape memory alloy strips were installed on masonry walls by three different configurations, namely in cross or vertical forms. Seven macroscopic masonry walls were modeled in Abaqus software and were subjected to cyclic loading protocol. Parameters such as stiffness, strength, durability, and energy dissipation of these models were then compared. According to the results, the Fe-based strips increased the strength, stiffness, and energy dissipation capacity. So that in the vertical-strip walls, the stiffness increases by 98.1%, and in the cross-strip model's position, the stiffness increases by 127.9%. In the vertical-strip model, the maximum resistance is equal to 108 kN, while in the end cycle, this number is reduced by almost half and reaches 40 kN, in the cross-strip model, the maximum resistance is equal to 104 kN, and in the final cycle, this number decreases by only 13.5% and reaches 90 kN. The scattering of Fe-based strips plays an important role in energy dissipation. Based on the observed behaviors, the greater the scattering, the higher the energy dissipation. The increase was more visible in the walls with the configuration of the crossed Fe-based strips.


Author(s):  
M. H. C. Hannink ◽  
F. J. Blom ◽  
P. W. B. Quist ◽  
A. E. de Jong ◽  
W. Besuijen

Long Term Operation (LTO) of nuclear power plants (NPPs) requires an ageing management review and a revalidation of Time Limited Ageing Analyses (TLAAs) of structures and components important for nuclear safety. An important ageing effect to manage is fatigue. Generally, the basis for this is formed by the fatigue analyses of the safety relevant components. In this paper, the methodology for the revalidation of fatigue TLAAs is demonstrated for LTO of NPP Borssele in the Netherlands. The LTO demonstration starts with a scoping survey to determine the components and locations having relevant fatigue loadings. The scope was defined by assessment against international practice and guidelines and engineering judgment. Next, a methodical review was performed of all existing fatigue TLAAs. This also includes the latest international developments regarding environmental effects. In order to reduce conservatism, a comparison was made between the number of cycles in the analyses and the number of cycles projected to the end of the intended LTO period. The projected number of cycles is based on transient counting. The loading conditions used in the analyses were assessed by means of temperature measurements by the fatigue monitoring system (FAMOS). As a result of the review, further fatigue assessment or assessment of environmental effects was necessary for certain locations. New analyses were performed using state-of-the-art calculation and assessment methods. The methodology is demonstrated by means of an example of the surge line. The model includes the piping, as well as the nozzles on the pressurizer and the main coolant line. The thermal loadings for the fatigue analysis are based on temperature measurements. Fatigue management of the NPP is ensured by means of the fatigue concept where load monitoring, transient counting and fatigue assessment are coupled through an integrated approach during the entire period of LTO.


2011 ◽  
Vol 12 ◽  
pp. 01002 ◽  
Author(s):  
E. Gallitre ◽  
D. Dauffer
Keyword(s):  

2021 ◽  
Vol 247 ◽  
pp. 113130
Author(s):  
Alaa A. El-Sisi ◽  
Ahmed I. Hassanin ◽  
Hesham F. Shabaan ◽  
Ahmed I. Elsheikh

1998 ◽  
Vol 25 (1) ◽  
pp. 113-127 ◽  
Author(s):  
Ezzeldin Y Sayed-Ahmed ◽  
Nigel G Shrive

During the past half century, the use of prestressing in different structures has increased tremendously. One of the most important techniques of prestressing is post-tensioning. The main problem associated with post-tensioning in different structures is the corrosion of the prestressing steel tendons even with well-protected steel. New materials, fibre reinforced plastics or polymers (FRP), which are more durable than steel, can be used for these tendons/strands and thus overcome the corrosion problem. However, different shortcomings appear when FRP tendons are introduced to post-tensioning prestressing applications. For carbon fibre plastic tendons (CFRP), there is no suitable anchorage system for post-tensioning applications. Some of the anchorages developed by others for use with FRPs are therefore described and assessed. A new anchorage system developed by the authors, which can be used with bonded or unbonded CFRP tendons in post-tensioning applications, is described. The results of direct tension and fatigue tests on CFRPs anchored with the new system are presented.Key words: anchorage system, cyclic loading, fatigue, fibre reinforced plastics, finite element analysis, post-tension, prestressed concrete, prestressed masonry, strands, tendons.


2000 ◽  
Vol 27 (5) ◽  
pp. 985-992 ◽  
Author(s):  
T I Campbell ◽  
N G Shrive ◽  
K A Soudki ◽  
A Al-Mayah ◽  
J P Keatley ◽  
...  

The development of a wedge-type anchorage system for fibre reinforced polymer (FRP) tendons, as part of an overall corrosion-free post-tensioning system, is outlined in this paper. A stainless steel anchor is described, and results from numerical models and load tests to evaluate its behaviour under loads from anchor set, as well as static and repeated tendon tension, are presented. An alternative wedge-type anchorage system made from ultra-high performance concrete is also described. It is shown that, although significant progress has been made in development of the anchorage, further work is required to make it more robust.Key words: FRP tendons, post-tensioning, anchorage, corrosion-free, mathematical models, load tests, concrete.


Sign in / Sign up

Export Citation Format

Share Document