Understanding the Process of Evolution and the Future of Biodiversity Under a Changing Climate with Special Reference to Infectious Diseases

2019 ◽  
pp. 341-360
Author(s):  
Tapan Kumar Barik ◽  
Jaya Kishor Seth
2017 ◽  
Vol 96 (4) ◽  
pp. 135-139
Author(s):  
M. P. Kostinov ◽  
◽  
A. M. Kostinova ◽  
◽  

2015 ◽  
Vol 9 (6) ◽  
pp. 728-729 ◽  
Author(s):  
Georges C. Benjamin

ABSTRACTThe last 14 years has taught us that that we are facing a new reality; a reality in which public health emergencies are a common occurrence. Today, we live in a world with dangerous people without state sponsorship who are an enormous threat to our safety; one where emerging and reemerging infectious diseases are waiting to break out; a world where the benefits of globalization in trade, transportation, and social media brings threats to our communities faster and with a greater risk than ever before. Even climate change has entered into the preparedness equation, bringing with it the forces of nature in the form of extreme weather and its complications. (Disaster Med Public Health Preparedness. 2015;9:728–729)


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Na Zhao ◽  
Jian Wang ◽  
Yong Yu ◽  
Jun-Yan Zhao ◽  
Duan-Bing Chen

AbstractMany state-of-the-art researches focus on predicting infection scale or threshold in infectious diseases or rumor and give the vaccination strategies correspondingly. In these works, most of them assume that the infection probability and initially infected individuals are known at the very beginning. Generally, infectious diseases or rumor has been spreading for some time when it is noticed. How to predict which individuals will be infected in the future only by knowing the current snapshot becomes a key issue in infectious diseases or rumor control. In this report, a prediction model based on snapshot is presented to predict the potentially infected individuals in the future, not just the macro scale of infection. Experimental results on synthetic and real networks demonstrate that the infected individuals predicted by the model have good consistency with the actual infected ones based on simulations.


1975 ◽  
Vol 8 (5) ◽  
pp. 268-270 ◽  
Author(s):  
W P Feistritzer

In this short article the author indicates the present stages of development of variety evaluation, testing, certification, production and marketing of quality seed—of cereals, industrial crops, pasture plants and vegetables—in major geographical regions of the world and draws attention to some of the underlying problems which must be faced in the future if further progress is to be made.


1980 ◽  
Vol 54 (5) ◽  
pp. 250-255
Author(s):  
Nobuko SATOMI ◽  
Hajime NISHIYA ◽  
Katsuyuki HARANAKA ◽  
Otohiko KUNII ◽  
Shiro MIWA ◽  
...  

Author(s):  
Toni Wandra

World Health Organization (WHO) defines zoonotic diseases (zoonoses) as those diseases and infections which are naturally transmitted between vertebrate animals and humans. More than 250 zoonoses have been described, over 60% of pathogens that cause diseases in humans are zoonoses of animals, and 75% of emerging infectious diseases. Most pandemics are caused by zoonoses.


Sign in / Sign up

Export Citation Format

Share Document