scholarly journals A database for spatial variability assessment of mechanical parameters of Ozigo specie under long-term bending tests in Gabon

Author(s):  
V. Nsouami ◽  
E. Bastidas-Arteaga ◽  
R. Moutou Pitti ◽  
N. Manfoumbi
2021 ◽  
Vol 13 (10) ◽  
pp. 5356
Author(s):  
Valérie Nsouami ◽  
Nicaise Manfoumbi ◽  
Rostand Moutou Moutou Pitti ◽  
Emilio Bastidas-Arteaga

Timber is a renewable material that should be more used for sustainable construction. While the mechanical behavior and durability of some species have been widely studied in the past, few studies are available for the Ozigo (Dacryodes buettneri) specie. This paper deals with the spatial variability of Ozigo beams subjected to long-term loadings and different environmental conditions. These beams were previously subjected to long-term creep in three environments (air-conditioned, unsheltered, and sheltered) at Masuku in the south-east of Gabon. Various specimens were extracted from these beams to determine its moisture content and subjected to three-point bending tests to obtain the modulus of elasticity and failure stress at various points in the space. The results obtained showed that, after long-term loadings, environmental exposure combined with mechanical loading, play a key role in the mechanical properties of the timber beams. A reduction of strength was found for the specimens extracted from the unsheltered and sheltered outdoor exposures in comparison with those extracted from the air-conditioned exposure. Concerning the spatial variability, statistical tests confirm that there is significant spatial correlation. It was also found that the spatial variation of properties in the beam is not stationary because it was affected by loading and support conditions.


2007 ◽  
Vol 16 (2) ◽  
pp. 139 ◽  
Author(s):  
Julie A. Winkler ◽  
Brian E. Potter ◽  
Dwight F. Wilhelm ◽  
Ryan P. Shadbolt ◽  
Krerk Piromsopa ◽  
...  

The Haines Index is an operational tool for evaluating the potential contribution of dry, unstable air to the development of large or erratic plume-dominated wildfires. The index has three variants related to surface elevation, and is calculated from temperature and humidity measurements at atmospheric pressure levels. To effectively use the Haines Index, fire forecasters and managers must be aware of the climatological and statistical characteristics of the index for their location. However, a detailed, long-term, and spatially extensive analysis of the index does not currently exist. To meet this need, a 40-year (1961–2000) climatology of the Haines Index was developed for North America. The climatology is based on gridded (2.5° latitude × 2.5° longitude) temperature and humidity fields from the NCEP/NCAR reanalysis. The climatology illustrates the large spatial variability in the Haines Index both within and between regions using the different index variants. These spatial variations point to the limitations of the index and must be taken into account when using the Haines Index operationally.


2006 ◽  
Vol 309-311 ◽  
pp. 1191-1194
Author(s):  
Shuichi Wakayama ◽  
Teppei Kawakami ◽  
Junji Ikeda

Microfracture process during bending tests of alumina ceramics used for artificial joints was evaluated by acoustic emission (AE) technique. Four-point bending tests were carried out in air, refined water, physiological saline and simulated body fluid. AE behavior during bending test inhibited the rapid increasing point of AE events and energy prior to the final unstable fracture. It was understood that the bending stress at the increasing point corresponds to the critical stress for maincrack formation. The critical stress was affected by water in environments more strongly than fracture strength. Consequently, it was suggested that the characterization of maincrack formation is essential for the long-term reliability assessment of load-bearing bioceramics.


2021 ◽  
Author(s):  
Luca Guillaumot ◽  
Luc Aquilina ◽  
Jean-Raynald de Dreuzy ◽  
Jean Marçais ◽  
Patrick Durand

<p>Over the past decades, intensive agriculture has altered surface water and groundwater resources quality. Nutrient surplus increased nitrate concentrations in groundwater and rivers resulting in eutrophication or drinking water risk having ecosystem, sanitary and economic repercussions. Legislations led to a reduction of agricultural inputs of nitrogen since 1990’s followed by a decrease of nitrate concentrations in rivers, but still difficult to predict and evaluate. Indeed, the incomplete knowledge of the spatial variability of climate and nitrogen inputs, cumulated to the unknown groundwater heterogeneity,  leads to hydrological and biogeochemical processes difficult to model. This study deals with the long-term variations (~decades) of nitrate concentrations in three rivers (~30 km² catchment) located in Brittany. Thus, we focus on groundwater modelling because they constitute the bigger hydrological reservoir. We developed a parsimonious equivalent hillslope-scale groundwater model. The model parameterization, which controls hydrological functioning such as mean groundwater residence times, young water contribution to the river or denitrification, relies on long-term monitored streamflow and nitrate river concentrations. In addition, dissolved CFC were sampled in the catchments. Finally, we found that uncertainty on simulated nitrate river concentrations is low. The physically-based model also brings information on temporal and spatial variability of groundwater residence times highlighting the relative importance of young (1-5 yr) and old waters (~decades) for nitrate river concentrations. Moreover, calibrated models show similar trends looking at two fictive input scenarios from 2015 to 2050.</p>


2019 ◽  
Vol 11 (11) ◽  
pp. 1364 ◽  
Author(s):  
Bohua Ling ◽  
Edward J. Raynor ◽  
Douglas G. Goodin ◽  
Anthony Joern

This study analyzed the spatial heterogeneity of grassland canopy nitrogen in a tallgrass prairie with different treatments of fire and ungulate grazing (long-term bison grazing vs. recent cattle grazing). Variogram analysis was applied to continuous remotely sensed canopy nitrogen images to examine the spatial variability in grassland canopies. Heterogeneity metrics (e.g., the interspersion/juxtaposition index) were calculated from the categorical canopy nitrogen maps and compared among fire and grazing treatments. Results showed that watersheds burned within one year had higher canopy nitrogen content and lower interspersions of high-nitrogen content patches than watersheds with longer fire intervals, suggesting an immediate and transient fire effect on grassland vegetation. In watersheds burned within one year, high-intensity grazing reduced vegetation density, but promoted grassland heterogeneity, as indicated by lower canopy nitrogen concentrations and greater interspersions of high-nitrogen content patches at the grazed sites than at the ungrazed sites. Variogram analyses across watersheds with different grazing histories showed that long-term bison grazing created greater spatial variability of canopy nitrogen than recent grazing by cattle. This comparison between bison and cattle is novel, as few field experiments have evaluated the role of grazing history in driving grassland heterogeneity. Our analyses extend previous research of effects from pyric herbivory on grassland heterogeneity by highlighting the role of grazing history in modulating the spatial and temporal distribution of aboveground nitrogen content in tallgrass prairie vegetation using a remote sensing approach. The comparison of canopy nitrogen properties and the variogram analysis of canopy nitrogen distribution provided by our study are useful for further mapping grassland canopy features and modeling grassland dynamics involving interplays among fire, large grazers, and vegetation communities.


2019 ◽  
Vol 36 (9) ◽  
pp. 2929-2959
Author(s):  
Hui Chen ◽  
Donghai Liu

Purpose The purpose of this study is to develop a stochastic finite element method (FEM) to solve the calculation precision deficiency caused by spatial variability of dam compaction quality. Design/methodology/approach The Choleski decomposition method was applied to generate constraint random field of porosity. Large-scale laboratory triaxial tests were conducted to determine the quantitative relationship between the dam compaction quality and Duncan–Chang constitutive model parameters. Based on this developed relationship, the constraint random fields of the mechanical parameters were generated. The stochastic FEM could be conducted. Findings When the fully random field was simulated without the restriction effect of experimental data on test pits, the spatial variabilities of both displacement and stress results were all overestimated; however, when the stochastic FEM was performed disregarding the correlation between mechanical parameters, the variabilities of vertical displacement and stress results were underestimated and variation pattern for horizontal displacement also changed. In addition, the method could produce results that are closer to the actual situation. Practical implications Although only concrete-faced rockfill dam was tested in the numerical examples, the proposed method is applicable for arbitrary types of rockfill dams. Originality/value The value of this study is that the proposed method allowed for the spatial variability of constitutive model parameters and that the applicability was confirmed by the actual project.


Author(s):  
Paul M. Porter ◽  
David R. Huggins ◽  
Catherine A. Perillo ◽  
Joseph G. Lauer ◽  
Edward S. Oplinger ◽  
...  
Keyword(s):  

2001 ◽  
Vol 5 (1) ◽  
pp. 49-58 ◽  
Author(s):  
H.J. Foster ◽  
M.J. Lees ◽  
H.S. Wheater ◽  
C. Neal ◽  
B. Reynolds

Abstract. Recent concern about the risk to biota from acidification in upland areas, due to air pollution and land-use change (such as the planting of coniferous forests), has generated a need to model catchment hydro-chemistry to assess environmental risk and define protection strategies. Previous approaches have tended to concentrate on quantifying either spatial variability at a regional scale or temporal variability at a given location. However, to protect biota from ‘acid episodes’, an assessment of both temporal and spatial variability of stream chemistry is required at a catchment scale. In addition, quantification of temporal variability needs to represent both episodic event response and long term variability caused by deposition and/or land-use change. Both spatial and temporal variability in streamwater chemistry are considered in a new modelling methodology based on application to the Plynlimon catchments, central Wales. A two-component End-Member Mixing Analysis (EMMA) is used whereby low and high flow chemistry are taken to represent ‘groundwater’ and ‘soil water’ end-members. The conventional EMMA method is extended to incorporate spatial variability in the two end-members across the catchments by quantifying the Acid Neutralisation Capacity (ANC) of each in terms of a statistical distribution. These are then input as stochastic variables to a two-component mixing model, thereby accounting for variability of ANC both spatially and temporally. The model is coupled to a long-term acidification model (MAGIC) to predict the evolution of the end members and, hence, the response to future scenarios. The results can be plotted as a function of time and space, which enables better assessment of the likely effects of pollution deposition or land-use changes in the future on the stream chemistry than current methods which use catchment average values. The model is also a useful basis for further research into linkage between hydrochemistry and intra-catchment biological diversity. Keywords: hydrochemistry, End-Member Mixing Analysis (EMMA), uplands, acidification


Sign in / Sign up

Export Citation Format

Share Document