Hands-On ONE Simulator: Opportunistic Network Environment

2018 ◽  
pp. 280-303
Author(s):  
Anshuman Chhabra ◽  
Vidushi Vashishth ◽  
Deepak Kumar Sharma
2014 ◽  
Vol 644-650 ◽  
pp. 1931-1934
Author(s):  
Fan Yang ◽  
Jia Zhe Lai ◽  
Ming Zhe Li

In the research of Delay Tolerant Network (DTN), DTN routing algorithm is a key research issue. The performance of a non-flooding routing algorithm is verified in our paper. The verified algorithm is an Adaptive Priority Routing Algorithm (APRA) which is based on fuzzy strategies. Firstly, we introduce the principle of APRA, then using Opportunistic Network Environment (ONE) -simulation software to compare the performance of Epidemic algorithm, Spray and Wait algorithm, PRoPHET algorithm and APRA. By comparing overhead of netword, rate of messages delivered and average dealy, it finds that the APRA performs better. At last, the weaknesses of this paper and further improvement are also discussed.


2021 ◽  
Author(s):  
Khuram Khalid

In this thesis, a history-based energy-efficient routing protocol (called AEHBPR) for opportunistic networks (OppNets) is proposed, which saves the energy consumption by avoiding unnecessary packets transmission in the network and by clearing the buffer of nodes carrying the copies of the already delivered packets. The proposed AEHBPR protocol is evaluated using the Opportunistic NEtwork (ONE) simulator with both synthetic and real mobility traces, showing a superior performance compared to the History-Based Prediction for Routing (HBPR) protocol and AEProphet, in terms of average remaining energy, number of dead nodes, number of delivered messages, and overhead ratio, where AEProphet is the ProPHet routing protocol for OppNets on which the same energy-aware mechanism has been implemented.


2019 ◽  
Vol 20 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Ritu Nigam ◽  
Deepak Kumar Sharma ◽  
Satbir Jain ◽  
Sarthak Gupta ◽  
Shilpa Ghosh

Integrating social networks properties such as centrality, tie strength, etc into message forwarding protocols in opportunistic networks has grown into a vital major benchmark. The opportunistic network is a demanding network with no set route to travel a message from the source to be able to the destination. During these networks, nodes use possibilities gained based on store-carry-forward patterns to forward communications. Every node that obtains a message when it activities another node makes selection concerning the forwarding or not necessarily delivering the node came across. Most of these message forwarding protocols use the benefit of social properties information like contact information and social relationship enclosed by the nodes in the social opportunistic network. In this paper, a Bonding based forwarding technique is proposed which is finding direct and indirect bonding among nodes by exploiting contact information and social pattern. In the proposed protocol, we also focus on indirect bonding by finding weakest direct bonded nodes and then replace it with strong indirect bonded nodes of the network. In this work, the balance between transmission delay and network traffic is considered by using shortest path map based mobility model. ONE simulator is used for simulation and performance of the proposed protocol is compared contrary popular approaches for instance Epidemic, PRoPHET, and BubbleRap, and Interaction based when using the shortest path map based mobility model. The Bonding based forwarding technique performs adequately well concerning the number of messages delivered, overhead ratio, message dropping and average latency.


2020 ◽  
Vol 9 (8) ◽  
pp. e473985535
Author(s):  
Rodrigo Perlin ◽  
Ricardo Tombesi Macedo ◽  
Sidnei Renato Silveira ◽  
Antonio Rodrigo Delepiane de Vit ◽  
Roberto Franciscatto

As redes tolerantes a atrasos e desconexões (Delay Tolerant Networks – DTNs) são redes que não precisam de infraestrutura e utilizam da locomoção dos seus nós para se comunicar. Todavia, ataques do tipo Buracos Negros (do inglês, Blackhole) consistem em uma ameaça para o funcionamento destas redes ao descartar pacotes de usuários legítimos. Na literatura há esforços para solucionar o ataque blackhole em DTNs. No entanto, as formas implementadas consomem uma grande quantidade de recursos da rede, pois funcionam por meio da geração de cópias da mensagem. Neste contexto, este trabalho apresenta uma abordagem de mitigação que se utiliza da Mojette e múltiplos caminhos para fragmentar, enviar e recuperar o dado e sem o alto desgaste da rede.  A abordagem foi desenvolvida utilizando a IDE (Integrated Development Environment) Eclipse em conjunto com o simulador  de ambiente  de rede oportunista The ONE (The Opportunistic Network Environment Simulator). Nesse ambiente foram desenvolvidos dois cenários com diferentes situações, a fim de realizar três simulações, visando a avaliar a abordagem que tem como objetivos transmitir e recuperar o pacote ainda que existam descartes. Os resultados obtidos por meio das simulações revelam que a abordagem apresenta uma taxa de remontagem de no mínimo 75%, ainda que a taxa de pacotes perdidos seja de 62,50%.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
M. Angulakshmi ◽  
M. Deepa ◽  
M. Vanitha ◽  
R. Mangayarkarasi ◽  
I. Nagarajan

PurposeIn this study, we discuss three DTN routing protocols, these are epidemic, PRoPHET and spray and wait routing protocols. A special simulator will be used; that is opportunistic network environment (ONE) to create a network environment. Spray and wait has highest delivery rate and low latency in most of the cases. Hence, spray and wait have better performance than others. This analysis of the performance of DTN protocols helps the researcher to learn better of these protocols in the different environment.Design/methodology/approachDelay-Tolerant Network (DTN) is a network designed to operate effectively over extreme distances, such as those encountered in space communications or on an interplanetary scale. In such an environment, nodes are occasional communication and are available among hubs, and determinations of the next node communications are not confirmed. In such network environment, the packet can be transferred by searching current efficient route available for a particular node. Due to the uncertainty of packet transfer route, DTN is affected by a variety of factors such as packet size, communication cost, node activity, etc.FindingsSpray and wait have highest delivery rate and low latency in most of the cases. Hence, spray and wait have better performance than others.Originality/valueThe primary goal of the paper is to extend these works in an attempt to offer a better understanding of the behavior of different DTN routing protocols with delivery probability, latency and overhead ratio that depend on various amounts of network parameters such as buffer size, number of nodes, movement ratio, time to live, movement range, transmission range and message generation rate. In this study, we discuss three DTN routing protocols: these are epidemic, PRoPHET and spray and wait routing protocols. A special simulator will be used; that is opportunistic network environment (ONE) to create a network environment. Spray and wait have highest delivery rate and low latency in most of the cases. Hence, spray and wait have better performance than others. This analysis of the performance of DTN protocols helps the researcher to learn better of these protocols in the different environment.


Author(s):  
Rahul Sachdeva ◽  
◽  
Amita Dev ◽  

Opportunistic Networks can be defined as Delay Tolerant Network, which are formed dynamically with participating nodes’ help. Opportunistic Networks follows Store-Carry-Forward principle to deliver/route the data in the network. Routing in Opportunistic Network starts with the Seed Node (Source Node) which delivers the data with the help of Intermediate nodes. Intermediate nodes store the data while roaming in the network until it comes in contact with appropriate forwarding node (relay node) or destination node itself. An extensive literature survey is performed to analyse various routing protocols defined for Opportunistic Network. With mobility induced routing, establishing and maintaining the routing path is a major challenge. Further, Store-Carry-Forward routing paradigm imposes various challenges while implementing and executing the network. Due to the unavailability of the suitable relay node, data needs to be stored within the Node’s Memory, imposes buffer storage issues at the node level. Also, uncontrolled flooding may impose link-level Congestion and treated as overhead to maintain the network. Another major challenge can be maintaining the energy level of the nodes in the network. Recently developed ONE (Opportunistic Network Environment) Simulator is used to simulate and emulate the environment required by Opportunistic Network. Along with the extensive literature survey of the protocols, few of the existing protocols viz. Direct Delivery, ProPHET, Epidemic and Spray & Wait Routing are implemented using ONE Simulator to analyse their performance while in execution. Results are being compared, and the researchers’ future direction is identified to address the open problems and challenges in Opportunistic Network.


2021 ◽  
Author(s):  
Khuram Khalid

In this thesis, a history-based energy-efficient routing protocol (called AEHBPR) for opportunistic networks (OppNets) is proposed, which saves the energy consumption by avoiding unnecessary packets transmission in the network and by clearing the buffer of nodes carrying the copies of the already delivered packets. The proposed AEHBPR protocol is evaluated using the Opportunistic NEtwork (ONE) simulator with both synthetic and real mobility traces, showing a superior performance compared to the History-Based Prediction for Routing (HBPR) protocol and AEProphet, in terms of average remaining energy, number of dead nodes, number of delivered messages, and overhead ratio, where AEProphet is the ProPHet routing protocol for OppNets on which the same energy-aware mechanism has been implemented.


2019 ◽  
Vol 20 (1) ◽  
pp. 27-40
Author(s):  
Deepak Kumar Sharma ◽  
Deepika Kukreja

Opportunistic network (Oppnet) is a class of networks where connections between the nodes are not permanent. The nodes are continuously moving and some nodes even switch off their batteries to conserve energy. Reliable delivery of messages in Opportunistic network is one major inherent issue. It is unreliable in the sense that once the source node has forwarded its message, then it will never get to know about its status in the network like whether the message has got discarded at an intermediate node or at the destination node (due to buffer overflow) or the successful delivery of the message has taken place. This work tries to make Oppnet as much reliable as possible. It proposes a reliability protocol named as “Reliability in Oppnet” (RIO). RIO improves the routing in Oppnet and works in parallel with the existing routing protocols. It makes the source node aware about the status of message so that if an error occurs then the source node can take suitable action to resend the message. It considers the redirection error, buffer overflow error, Time Limit Exceeded (TLE), parameter problem and destination unreachable errors that may occur inside the network. RIO has been tested using ONE simulator and implemented with Spray and Wait routing protocol. Results show that the RIO with Spray and Wait protocol outperforms normal Spray and Wait protocol in terms of average message delivery probability.


Sign in / Sign up

Export Citation Format

Share Document