Propagation of wave beams of finite width in inhomogeneous magnetized ferrite films

Author(s):  
V.G. Shavrov ◽  
V.I. Shcheglov
Keyword(s):  
1997 ◽  
Vol 51 (8) ◽  
pp. 77-84
Author(s):  
L. M. Buzik ◽  
O. F. Pishko ◽  
S.A. Churilova ◽  
O. I. Sheremet

Author(s):  
Frank S. Levin

Quantum tunneling, wherein a quanject has a non-zero probability of tunneling into and then exiting a barrier of finite width and height, is the subject of Chapter 13. The description for the one-dimensional case is extended to the barrier being inverted, which forms an attractive potential well. The first application of this analysis is to the emission of alpha particles from the decay of radioactive nuclei, where the alpha-nucleus attraction is modeled by a potential well and the barrier is the repulsive Coulomb potential. Excellent results are obtained. Ditto for the similar analysis of proton burning in stars and yet a different analysis that explains tunneling through a Josephson junction, the connector between two superconductors. The final application is to the scanning tunneling microscope, a device that allows the microscopic surfaces of solids to be mapped via electrons from the surface molecules tunneling into the tip of the STM probe.


2013 ◽  
Vol 690-693 ◽  
pp. 1702-1706 ◽  
Author(s):  
Shuang Jun Nie ◽  
Hao Geng ◽  
Jun Bao Wang ◽  
Lai Sen Wang ◽  
Zhen Wei Wang ◽  
...  

NiZn-ferrite thin films were deposited onto silicon and glass substrates by radio frequency magnetron sputtering at room temperature. The effects of the relative oxygen flow ratio on the structure and magnetic properties of the thin films were investigated. The study results reveal that the films deposited under higher relative oxygen flow ratio show a better crystallinity. Static magnetic measurement results indicated that the saturation magnetization of the films was greatly affected by the crystallinity, grain dimension, and cation distribution in the NiZn-ferrite films. The NiZn-ferrite thin films with a maximum saturation magnetization of 151 emucm-3, which is about 40% of the bulk NiZn ferrite, was obtained under relative oxygen flow ratio of 60%.


2004 ◽  
Vol 85 (21) ◽  
pp. 4834-4836 ◽  
Author(s):  
Zhaofeng Li ◽  
Haibo Chen ◽  
Zhitang Song ◽  
Fuhua Yang ◽  
Songlin Feng

1993 ◽  
Vol 313 ◽  
Author(s):  
Eva M. Wong ◽  
Haixing Zheng ◽  
John D. Mackenzie ◽  
T. Tsuchiya

ABSTRACTFerrimagnetic oxide films have been shown to have potential for use as Magneto-optical information storage Materials. Cobalt ferrite films are particularly interesting for magneto optical information storage due to their high magneto optical rotation [1]. In this work, synthesized soluble cobalt (II) and iron (III) Methoxyethoxides were mixed in stoichiometric ratios for use as Co and Fe precursors in the preparation of CoFe2O4ferrimagnetic films. The decomposition of the precursors was characterized by thermogravimetric analysis.CoFe2O4 films were prepared by the dip coating technique using fused silica substrates. These films were then heat treated at temperatures ranging from 200°C to 600°C to study the transformation from an amorphous film to a crystalline film as determined by x-ray diffraction. The Magnetic hysteresis behavior of the films as a function of heat treating temperature and hence crystallinity was also studied. As a general trend, films having a greater degree of crystallinity exhibited larger values of saturation magnetization and remanent Magnetization. The amorphous film was found to exhibit the highest coercive field, but low values of saturation and remanent Magnetization. The effect of heat treating under the influence of a magnetic field of 1.88 kÖe was found to enhance crystallization only slightly and had very little effect on the magnetic properties of the film.


1999 ◽  
Vol 121 (3) ◽  
pp. 385-392 ◽  
Author(s):  
Robert J. Stango ◽  
Lienjing Chen ◽  
Vikram Cariapa

In this paper, a dynamic model for removal of edge burrs with a compliant brushing tool is reported. Description of the burr geometry is assumed to be known through on-line measurement methods such as a computer vision system in the flexible manufacturing cell. Dynamic response of the brush/workpiece system is evaluated on the basis of experimentally obtained data. Master Curves are introduced as machining descriptors which characterize the incremental burr removal performance of the brush/workpiece system, leading to the development of an analytical dynamic model for orthogonal burr removal using a finite-width brushing tool. Based upon the dynamic model for material removal, a control strategy for automatic deburring is presented for burr configurations having constant height as well as variable height. A closed-form solution for transverse brush feed rate is obtained which is applicable for removal of burrs having variable height, as described by suitable geometry functions. For illustrative purposes, simulations are carried out for a straight-edge burr profile and sinusoidal burr geometry. Results are reported which identify important relationships among brush feed rate, brush penetration depth, and brush rotational speed. In order to help assess the validity of the proposed analytical model and control strategy, experimental results are reported for a combination ramp/straight-edge burr configuration. The results demonstrate generally good correlation between the predicted and actual profile for the edge burr that has been machined. In addition, some important observations include; (1) burr removal is most rapidly carried out by using the highest brush speed and deepest brush/workpiece penetration depth, subject to the condition that the brush fiber is not damaged, (2) Currently available polymer abrasive brushing tools exhibit very slow machining characteristics and must be improved in order to be used in a production environment where burr size is appreciable, (3) Material removal characteristics of the leading and trailing edge of brushes may be a source of error which merits further investigation.


Sign in / Sign up

Export Citation Format

Share Document