Automated Deburring with a Filamentary Brush: Prescribed Burr Geometry

1999 ◽  
Vol 121 (3) ◽  
pp. 385-392 ◽  
Author(s):  
Robert J. Stango ◽  
Lienjing Chen ◽  
Vikram Cariapa

In this paper, a dynamic model for removal of edge burrs with a compliant brushing tool is reported. Description of the burr geometry is assumed to be known through on-line measurement methods such as a computer vision system in the flexible manufacturing cell. Dynamic response of the brush/workpiece system is evaluated on the basis of experimentally obtained data. Master Curves are introduced as machining descriptors which characterize the incremental burr removal performance of the brush/workpiece system, leading to the development of an analytical dynamic model for orthogonal burr removal using a finite-width brushing tool. Based upon the dynamic model for material removal, a control strategy for automatic deburring is presented for burr configurations having constant height as well as variable height. A closed-form solution for transverse brush feed rate is obtained which is applicable for removal of burrs having variable height, as described by suitable geometry functions. For illustrative purposes, simulations are carried out for a straight-edge burr profile and sinusoidal burr geometry. Results are reported which identify important relationships among brush feed rate, brush penetration depth, and brush rotational speed. In order to help assess the validity of the proposed analytical model and control strategy, experimental results are reported for a combination ramp/straight-edge burr configuration. The results demonstrate generally good correlation between the predicted and actual profile for the edge burr that has been machined. In addition, some important observations include; (1) burr removal is most rapidly carried out by using the highest brush speed and deepest brush/workpiece penetration depth, subject to the condition that the brush fiber is not damaged, (2) Currently available polymer abrasive brushing tools exhibit very slow machining characteristics and must be improved in order to be used in a production environment where burr size is appreciable, (3) Material removal characteristics of the leading and trailing edge of brushes may be a source of error which merits further investigation.

Author(s):  
A. Pandey ◽  
R. Kumar ◽  
A. K. Sahoo ◽  
A. Paul ◽  
A. Panda

The current research presents an overall performance-based analysis of Trihexyltetradecylphosphonium Chloride [[CH3(CH2)5]P(Cl)(CH2)13CH3] ionic fluid mixed with organic coconut oil (OCO) during turning of hardened D2 steel. The application of cutting fluid on the cutting interface was performed through Minimum Quantity Lubrication (MQL) approach keeping an eye on the detrimental consequences of conventional flood cooling. PVD coated (TiN/TiCN/TiN) cermet tool was employed in the current experimental work. Taguchi’s L9 orthogonal array and TOPSIS are executed to analysis the influences, significance and optimum parameter settings for predefined process parameters. The prime objective of the current work is to analyze the influence of OCO based Trihexyltetradecylphosphonium Chloride ionic fluid on flank wear, surface roughness, material removal rate, and chip morphology. Better quality of finish (Ra = 0.2 to 1.82 µm) was found with 1% weight fraction but it is not sufficient to control the wear growth. Abrasion, chipping, groove wear, and catastrophic tool tip breakage are recognized as foremost tool failure mechanisms. The significance of responses have been studied with the help of probability plots, main effect plots, contour plots, and surface plots and the correlation between the input and output parameters have been analyzed using regression model. Feed rate and depth of cut are equally influenced (48.98%) the surface finish while cutting speed attributed the strongest influence (90.1%). The material removal rate is strongly prejudiced by cutting speed (69.39 %) followed by feed rate (28.94%) whereas chip reduction coefficient is strongly influenced through the depth of cut (63.4%) succeeded by feed (28.8%). TOPSIS significantly optimized the responses with 67.1 % gain in closeness coefficient.


2010 ◽  
Vol 447-448 ◽  
pp. 193-197
Author(s):  
Wei Qiang Gao ◽  
Qiu Sheng Yan ◽  
Yi Liu ◽  
Jia Bin Lu ◽  
Ling Ye Kong

Electro-magneto-rheological (EMR) fluids, which exhibit Newtonian behavior in the absence of a magnetic field, are abruptly transformed within milliseconds into a Bingham plastic under an applied magnetic field, called the EMR effect. Based on this effect, the particle-dispersed EMR fluid is used as a special instantaneous bond to cohere abrasive particles and magnetic particles together so as to form a dynamical, flexible tiny-grinding wheel to machine micro-groove on the surface of optical glass. Experiments were conducted to reveal the effects of process parameters, such as the feed rate of the horizontal worktable, feeding of the Z axis, machining time and machining gap, on material removal rate of glass. The results indicate that the feed rate of the worktable at horizontal direction has less effect on material removal rate, which shows a fluctuation phenomenon within a certain range. The feed rate of the Z axis directly influences the machining gap and leads to a remarkable change on material removal rate. Larger material removal rate can be obtained when the feeding frequency of Z direction is one time per processing. With the increase of rotation speed of the tool, material removal rate increases firstly and decreases afterwards, and it gets the maximum value with the rotation speed of 4800 rev/min. The machining time is directly proportional to material removal amount, but inversely proportional to material removal rate. Furthermore, material removal rate decreases with the increase of the machining gap between the tool and the workpiece. On the basis of above, the machining mode with the tiny-grinding wheel based on the EMR effect is presented.


2015 ◽  
Vol 1115 ◽  
pp. 12-15
Author(s):  
Nur Atiqah ◽  
Mohammad Yeakub Ali ◽  
Abdul Rahman Mohamed ◽  
Md. Sazzad Hossein Chowdhury

Micro end milling is one of the most important micromachining process and widely used for producing miniaturized components with high accuracy and surface finish. This paper present the influence of three micro end milling process parameters; spindle speed, feed rate, and depth of cut on surface roughness (Ra) and material removal rate (MRR). The machining was performed using multi-process micro machine tools (DT-110 Mikrotools Inc., Singapore) with poly methyl methacrylate (PMMA) as the workpiece and tungsten carbide as its tool. To develop the mathematical model for the responses in high speed micro end milling machining, Taguchi design has been used to design the experiment by using the orthogonal array of three levels L18 (21×37). The developed models were used for multiple response optimizations by desirability function approach to obtain minimum Ra and maximum MRR. The optimized values of Ra and MRR were 128.24 nm, and 0.0463 mg/min, respectively obtained at spindle speed of 30000 rpm, feed rate of 2.65 mm/min, and depth of cut of 40 μm. The analysis of variance revealed that spindle speeds are the most influential parameters on Ra. The optimization of MRR is mostly influence by feed rate. Keywords:Micromilling,surfaceroughness,MRR,PMMA


2011 ◽  
Vol 308-310 ◽  
pp. 1582-1585
Author(s):  
Yi Sheng Huang ◽  
Tso Hsien Liao

Statechart has been utilized as a visual formalism for the modeling of complex systems. It illuminates the features on describing properties of causality, concurrency and synchronization. The reachability structure is used to represented dynamic model by a Boolean function. In this paper, we try to describe State invariant method and equation function for hierarchical tree diagram. Finally, we used them to analyze the urban traffic control systems which are modeled by using Statecharts. Their formalism provides a concept of propositional logic for presenting control strategy.


This research is a study of the turning process by testing with brass material. There are three control factors: spindle of speed, feed rate, and depth of cut respectively. The turning process requires variable control,affect the quality of production productivity and production costplanning an experiment with the Taguchi Method help in theexperiment the analysis of variance, orthogonal array, and signal and noise ratios were considered as an experiment and survey of brass turning characteristics to determine the lowest material removal rate.The results obtained from the experiment were used to repeat the experiment for confirmation. This requires the turning process to be reliable and optimized


Author(s):  
Hachmia Faqihi ◽  
Khalid Benjelloun ◽  
Maarouf Saad ◽  
Mohammed Benbrahim ◽  
M. Nabil Kabbaj

<p>One of the most efficient approaches to control a multiple degree-of-freedom robot manipulator is the virtual decomposition control (VDC). However, the use of the re- gressor technique in the conventionnal VDC to estimate the unknown and uncertaities parameters present some limitations. In this paper, a new control strategy of n-DoF robot manipulator, refering to reorganizing the equation of the VDC using the time delay estimation (TDE) have been investigated. In the proposed controller, the VDC equations are rearranged using the TDE for unknown dynamic estimations. Hence, the decoupling dynamic model for the manipulator is established. The stability of the overall system is proved based on Lyapunov theory. The effectiveness of the proposed controller is proved via case study performed on 7-DoF robot manipulator and com- pared to the conventionnal Regressor-based VDC according to some evalution criteria. The results carry out the validity and efficiency of the proposed time delay estimation- based virtual decomposition controller (TD-VDC) approach.</p>


2010 ◽  
Vol 39 ◽  
pp. 598-601
Author(s):  
Bing Zhou ◽  
Shao Yi Bei ◽  
Jing Bo Zhao

The control strategy is one of the key technologies of EPS system, and the assistance characteristic has great importance to the vehicle handiness and road feeling. Based on the EPS dynamic model, the curved assistance characteristic is designed. The curved assistance characteristic has the superiority to find the better balance between handiness and road feeling. It has engineering significance to the overall design, function enhancement and optimization and steering manipulation and safety improvement.


2014 ◽  
Vol 592-594 ◽  
pp. 516-520 ◽  
Author(s):  
Basil Kuriachen ◽  
Jose Mathew

Micro EDM milling process is accruing a lot of importance in micro fabrication of difficult to machine materials. Any complex shape can be generated with the help of the controlled cylindrical tool in the pre determined path. Due to the complex material removal mechanism on the tool and the work piece, a detailed parametric study is required. In this study, the influence of various process parameters on material removal mechanism is investigated. Experiments were planned as per Response Surface Methodology (RSM) – Box Behnken design and performed under different cutting conditions of gap voltage, capacitance, electrode rotation speed and feed rate. Analysis of variance (ANOVA) was employed to identify the level of importance of machining parameters on the material removal rate. Maximum material removal rate was obtained at Voltage (115V), Capacitance (0.4μF), Electrode rotational Speed (1000rpm), and Feed rate (18mm/min). In addition, a mathematical model is created to predict the material removal


Author(s):  
L. Beji ◽  
M. Pascal ◽  
P. Joli

Abstract In this paper, an architecture of a six degrees of freedom (dof) parallel robot and three limbs is described. The robot is called Space Manipulator (SM). In a first step, the inverse kinematic problem for the robot is solved in closed form solution. Further, we need to inverse only a 3 × 3 passive jacobian matrix to solve the direct kinematic problem. In a second step, the dynamic equations are derived by using the Lagrangian formalism where the coordinates are the passive and active joint coordinates. Based on geometrical properties of the robot, the equations of motion are derived in terms of only 9 coordinates related by 3 kinematic constraints. The computational cost of the obtained dynamic model is reduced by using a minimum set of base inertial parameters.


Sign in / Sign up

Export Citation Format

Share Document