IoT Middleware Technology

Author(s):  
Arindam Giri ◽  
Subrata Dutta ◽  
Kailash Chandra Mishra ◽  
Sarmistha Neogy
Author(s):  
B. Darsana ◽  
Karabi Konar

Current advances in portable devices, wireless technologies, and distributed systems have created a mobile computing environment that is characterized by a large scale of dynamism. Diversities in network connectivity, platform capability, and resource availability can significantly affect the application performance. Traditional middleware systems are not prepared to offer proper support for addressing the dynamic aspects of mobile systems. Modern distributed applications need a middleware that is capable of adapting to environment changes and that supports the required level of quality of service. This paper represents the experience of several research projects related to next generation middleware systems. We first indicate the major challenges in mobile computing systems and try to identify the main requirements for mobile middleware systems. The different categories of mobile middleware technologies are reviewed and their strength and weakness are analyzed.


Author(s):  
Leonardo Albernaz Amaral ◽  
Everton de Matos ◽  
Ramão Tiago Tiburski ◽  
Fabiano Hessel ◽  
Willian Tessaro Lunardi ◽  
...  

Author(s):  
Emma Parry

The seamless electronic health record is often hailed as the holy grail of health informatics. What is an electronic health record? This question is answered and consideration is given to the advantages and disadvantages of an electronic health record. The place of the electronic health record at the centre of a clinical information system is discussed. In expanding on the advantages several areas are covered including: analysis of data, accessibility and availability, and access control. Middleware technology and its place are discussed. Requirements for implementing a system and some of the issues that can arise in the field of women’s health are elucidated. Finally, in this exciting and fast moving field, future research is discussed.


Author(s):  
Karim El Guemhioui

The information technology (IT) industry has been moving so fast that companies implementing complex distributed software solutions hardly complete a system deployment on a given network middleware before either they are offered a newer version of the middleware technology, or a competing and alleged superior technology appears.


2017 ◽  
Vol 31 (02) ◽  
pp. 1650264 ◽  
Author(s):  
Dong Jiang ◽  
Yuanyuan Chen ◽  
Xuemei Gu ◽  
Ling Xie ◽  
Lijun Chen

Quantum key distribution (QKD) promises unconditionally secure communications, however, the low bit rate of QKD cannot meet the requirements of high-speed applications. Despite the many solutions that have been proposed in recent years, they are neither efficient to generate the secret keys nor compatible with other QKD systems. This paper, based on chaotic cryptography and middleware technology, proposes an efficient and universal QKD protocol that can be directly deployed on top of any existing QKD system without modifying the underlying QKD protocol and optical platform. It initially takes the bit string generated by the QKD system as input, periodically updates the chaotic system, and efficiently outputs the bit sequences. Theoretical analysis and simulation results demonstrate that our protocol can efficiently increase the bit rate of the QKD system as well as securely generate bit sequences with perfect statistical properties. Compared with the existing methods, our protocol is more efficient and universal, it can be rapidly deployed on the QKD system to increase the bit rate when the QKD system becomes the bottleneck of its communication system.


Sign in / Sign up

Export Citation Format

Share Document