Effect of the Variability of Seasonal Moduli Adjustment Factors on the Mechanistic-Empirical Overlay Design

Author(s):  
Fouad M. Bayomy ◽  
Mostafa A.H. Abo-Hashema
Author(s):  
Steve K. Hsiung ◽  
Kevan V. Tan ◽  
Andrew J. Komrowski ◽  
Daniel J. D. Sullivan ◽  
Jan Gaudestad

Abstract Scanning SQUID (Superconducting Quantum Interference Device) Microscopy, known as SSM, is a non-destructive technique that detects magnetic fields in Integrated Circuits (IC). The magnetic field, when converted to current density via Fast Fourier Transform (FFT), is particularly useful to detect shorts and high resistance (HR) defects. A short between two wires or layers will cause the current to diverge from the path the designer intended. An analyst can see where the current is not matching the design, thereby easily localizing the fault. Many defects occur between or under metal layers that make it impossible using visible light or infrared emission detecting equipment to locate the defect. SSM is the only tool that can detect signals from defects under metal layers, since magnetic fields are not affected by them. New analysis software makes it possible for the analyst to overlay design layouts, such as CAD Knights, directly onto the current paths found by the SSM. In this paper, we present four case studies where SSM successfully localized short faults in advanced wire-bond and flip-chip packages after other fault analysis methods failed to locate the defects.


2013 ◽  
Vol 139 (8) ◽  
pp. 859-871 ◽  
Author(s):  
Mohamed El Esawey ◽  
Clark Lim ◽  
Tarek Sayed ◽  
Ahmed Ibrahim Mosa
Keyword(s):  

2011 ◽  
Vol 287-290 ◽  
pp. 858-861
Author(s):  
Hui Wang ◽  
Zhou Qing Zhao ◽  
Jian Zeng

Aiming at the characteristics of pavement rutting damage of test road under the condition of heavy load and abrupt slope, an overlay design scheme and a new overlay material with high performance was proposed. The new material is PG82 modified asphalt SMA-13 added polyester fibre which can significantly improve the high temperature performance of asphalt mixture under severe environment, and its strength and crack resistance are superior to normal SMA-13. Tracking survey of test road shows that the pavement performances keeps good and rutting is under good control. Therefore those measurements are successful and can be a reference to similar projects.


2003 ◽  
Vol 30 (2) ◽  
pp. 287-307 ◽  
Author(s):  
JagMohan Humar ◽  
Mohamed A Mahgoub

In the proposed 2005 edition of the National Building Code of Canada (NBCC), the seismic hazard will be represented by uniform hazard spectra corresponding to a 2% probability of being exceeded in 50 years. The seismic design base shear for use in an equivalent static load method of design will be obtained from the uniform hazard spectrum for the site corresponding to the first mode period of the building. Because this procedure ignores the effect of higher modes, the base shear so derived must be suitably adjusted. A procedure for deriving the base shear adjustment factors for different types of structural systems is described and the adjustment factor values proposed for the 2005 NBCC are presented. The adjusted base shear will be distributed across the height of the building in accordance with the provisions in the current version of the code. Since the code-specified distribution is primarily based on the first mode vibration shape, it leads to an overestimation of the overturning moments, which should therefore be suitably adjusted. Adjustment factors that must be applied to the overturning moments at the base and across the height are derived for different structural shapes, and the empirical values for use in the 2005 NBCC are presented.Key words: uniform hazard spectrum, seismic design base shear, equivalent static load procedure, higher mode effects, base shear adjustment factors, distribution of base shear, overturning moment adjustment factors.


Sign in / Sign up

Export Citation Format

Share Document