Failure Analysis of Short Faults on Advanced Wire-Bond and Flip-Chip Packages with Scanning SQUID Microscopy

Author(s):  
Steve K. Hsiung ◽  
Kevan V. Tan ◽  
Andrew J. Komrowski ◽  
Daniel J. D. Sullivan ◽  
Jan Gaudestad

Abstract Scanning SQUID (Superconducting Quantum Interference Device) Microscopy, known as SSM, is a non-destructive technique that detects magnetic fields in Integrated Circuits (IC). The magnetic field, when converted to current density via Fast Fourier Transform (FFT), is particularly useful to detect shorts and high resistance (HR) defects. A short between two wires or layers will cause the current to diverge from the path the designer intended. An analyst can see where the current is not matching the design, thereby easily localizing the fault. Many defects occur between or under metal layers that make it impossible using visible light or infrared emission detecting equipment to locate the defect. SSM is the only tool that can detect signals from defects under metal layers, since magnetic fields are not affected by them. New analysis software makes it possible for the analyst to overlay design layouts, such as CAD Knights, directly onto the current paths found by the SSM. In this paper, we present four case studies where SSM successfully localized short faults in advanced wire-bond and flip-chip packages after other fault analysis methods failed to locate the defects.

Author(s):  
L. A. Knauss ◽  
B. M. Frazier ◽  
H. M. Christen ◽  
S. D. Silliman ◽  
K. S. Harshavardhan ◽  
...  

Abstract As process technologies of integrated circuits become more complex and the industry moves toward flipchip packaging, present tools and techniques are having increasing difficulty in meeting failure analysis needs. One of the most common failures in these types of ICs and packages is power shorts, both during fabrication and in the field. Many techniques such as Emission Microscopy and Liquid Crystal are either not able to locate power shorts or are inhibited in their effectiveness by multiple layers of metal and flip-chip type packaging. A scanning SQUID microscope can overcome some of these difficulties. A SQUID (Superconducting Quantum Interference Device) is a very sensitive magnetic sensor that can image magnetic fields generated by magnetic materials or currents (such as those in an integrated circuit). The current density distribution in the sample can then be calculated from the magnetic field image, and resolutions approaching 5 times the near field limit can be obtained. We present here the application of a SQUID microscope to physical failure analysis and compare it with other techniques to detect shorted current paths in flip-chip mounted ICs and packages.


Author(s):  
R.K. Jain ◽  
T. Malik ◽  
T.R. Lundquist ◽  
Q.S. Wang ◽  
R. Schlangen ◽  
...  

Abstract Backside circuit edit techniques on integrated circuits (ICs) are becoming common due to increase number of metal layers and flip chip type packaging. However, a thorough study of the effects of these modifications has not been published. This in spite of the fact that the IC engineers have sometimes wondered about the effects of backside circuit edit on IC behavior. The IC industry was well aware that modifications can lead to an alteration of the intrinsic behavior of a circuit after a FIB edit [1]. However, because alterations can be controlled [2], they have not stopped the IC industry from using the FIB to successfully reconfigure ICs to produce working “silicon” to prove design and mask changes. Reliability of silicon device structures, transistors and diodes, are investigated by monitoring intrinsic parameters before and after various steps of modification.


2013 ◽  
Vol 475-476 ◽  
pp. 3-6 ◽  
Author(s):  
Qing Meng Wang ◽  
Hua Feng Qin ◽  
Qing Song Liu ◽  
Tao Song

A microscope to image weak magnetic fields using a low-temperature superconducting quantum interference device (SQUID) had developed with a liquid helium consumption rate of ~0.5L/hour. The gradient pickup coil is made by a low-temperature superconducting niobium wire with a diameter of 66 μm, which is coupled to the input circuit of the SQUID and is then enwound on the sapphire bobbin. Both of the pickup coil and the SQUID sensor are installed in a red copper cold finger, which is thermally anchored to the liquid helium evaporation platform in the vacuum space of the cryostat. To reduce the distance between the pickup coil and sample, a 100 μm thick sapphire window is nestled up to the bottom of the cryostat. A three-dimensional scanning stage platform with a 50 cm Teflon sample rack under the sapphire window had the precision of 10 μm. To test the fidelity of the new facility, the distribution of the magnetic field of basalt slice specimens was determined. Results show that the spatial resolution of the newly-designed facility is 500 μm with a gradient magnetic field sensitivity of 380fT. This opens new opportunities in examining the distribution of magnetic assemblages in samples, which bear great geological and geophysical information.


Author(s):  
W. Qiu ◽  
M.S. Wei ◽  
J. Gaudestad ◽  
V.V. Talanov

Abstract Space-domain reflectometry (SDR) utilizing scanning superconducting quantum interference device (SQUID) microscopy is a newly developed non-destructive failure analysis (FA) technique for open fault isolation. Unlike the conventional open fault isolation method, time-domain reflectometry (TDR), scanning SQUID SDR provides a truly two-dimensional physical image of device under test with spatial resolution down to 30 μm [1]. In this paper, the SQUID SDR technique is used to isolate dead open faults in flip-chip devices. The experimental results demonstrate the capability of SDR in open fault detection


Author(s):  
J. Gaudestad ◽  
D. Nuez ◽  
P. Tan

Abstract Interposers used in 2.5D technologies introduce new challenges for Electric Fault Isolation (EFI) due to the multiple layers of silicon, metal layers, Through Silicon Vias (TSV), solder bumps and/or copper pillars making it hard for standard EFI techniques, such as thermal and optical techniques, to localize failures due to the opaqueness of these materials [1, 2, 3]. In this paper we show that shorts in 2.5D Integrated Circuits (IC) technologies can be localized accurately in x, y and z-direction using Magnetic Current Imaging (MCI) while injecting a low power current and showing that the materials used in 2.5D semiconductor manufacturing are fully transparent to magnetic fields.


2019 ◽  
Vol 1399 ◽  
pp. 022036
Author(s):  
P P Boriskov ◽  
N Yu Ershova ◽  
V V Putrolaynen ◽  
P N Seredov ◽  
M A Belyaev

2018 ◽  
Author(s):  
Daechul Choi ◽  
Yoonseong Kim ◽  
Jongyun Kim ◽  
Han Kim

Abstract In this paper, we demonstrate cases for actual short and open failures in FCB (Flip Chip Bonding) substrates by using novel non-destructive techniques, known as SSM (Scanning Super-conducting Quantum Interference Device Microscopy) and Terahertz TDR (Time Domain Reflectometry) which is able to pinpoint failure locations. In addition, the defect location and accuracy is verified by a NIR (Near Infra-red) imaging system which is also one of the commonly used non-destructive failure analysis tools, and good agreement was made.


Author(s):  
D. Vallett ◽  
J. Gaudestad ◽  
C. Richardson

Abstract Magnetic current imaging (MCI) using superconducting quantum interference device (SQUID) and giant-magnetoresistive (GMR) sensors is an effective method for localizing defects and current paths [1]. The spatial resolution (and sensitivity) of MCI is improved significantly when the sensor is as close as possible to the current paths and associated magnetic fields of interest. This is accomplished in part by nondestructive removal of any intervening passive layers (e.g. silicon) in the sample. This paper will present a die backside contour-milling process resulting in an edge-to-edge remaining silicon thickness (RST) of < 5 microns, followed by a backside GMR-based MCI measurement performed directly on the ultra-thin silicon surface. The dramatic improvement in resolving current paths in an ESD protect circuit is shown as is nanometer scale resolution of a current density peak due to a power supply shortcircuit defect at the edge of a flip-chip packaged die.


Author(s):  
Kendall Scott Wills ◽  
Omar Diaz de Leon ◽  
Kartik Ramanujachar ◽  
Charles P. Todd

Abstract In the current generations of devices the die and its package are closely integrated to achieve desired performance and form factor. As a result, localization of continuity failures to either the die or the package is a challenging step in failure analysis of such devices. Time Domain Reflectometry [1] (TDR) is used to localize continuity failures. However the accuracy of measurement with TDR is inadequate for effective localization of the failsite. Additionally, this technique does not provide direct 3-Dimenstional information about the location of the defect. Super-conducting Quantum Interference Device (SQUID) Microscope is useful in localizing shorts in packages [2]. SQUID microscope can localize defects to within 5um in the X and Y directions and 35um in the Z direction. This accuracy is valuable in precise localization of the failsite within the die, package or the interfacial region in flipchip assemblies.


Author(s):  
Olivier Crépel ◽  
Philippe Descamps ◽  
Patrick Poirier ◽  
Romain Desplats ◽  
Philippe Perdu ◽  
...  

Abstract Magnetic field based techniques have shown great capabilities for investigation of current flows in integrated circuits (ICs). After reviewing the performances of SQUID, GMR (hard disk head technologies) and MTJ existing sensors, we will present results obtained on various case studies. This comparison will show the benefit of each approach according to each case study (packaged devices, flip-chip circuits, …). Finally we will discuss on the obtained results to classify current techniques, optimal domain of applications and advantages.


Sign in / Sign up

Export Citation Format

Share Document