Variation of certain water quality parameters with stream water turbidity: A case study from southern part of Germany

2020 ◽  
pp. 251-260
Author(s):  
C.S.P. Ojha ◽  
U. Muller ◽  
G. Baldauf ◽  
W. Kühn
2012 ◽  
Vol 12 (6) ◽  
pp. 918-925 ◽  
Author(s):  
Y. Sangu ◽  
H. Yokoi ◽  
H. Tadokoro ◽  
T. Tachi

An automatic coagulant dosage control technology for water purification plants was developed to deal with rapid changes of raw water quality parameters. Control logic was developed to decide coagulant dosage based on aluminum concentration in rapid mixing tank water based on results of semi-pilot scale experiments. This logic enabled quick feedback on the excess or lack of coagulant. It was found that the aluminum residual rate, which was proposed as an indicator of coagulation reactions, could be given as a function of coagulant dosage and turbidity. The effectiveness of the control logic was verified in semi-pilot scale experiments. Settled water turbidity was within ±0.5 NTU of target value even when raw water turbidity increased rapidly up to 100 NTU.


2017 ◽  
Vol 22 (7) ◽  
pp. 2206-2213 ◽  
Author(s):  
Armin Azad ◽  
Hojat Karami ◽  
Saeed Farzin ◽  
Amir Saeedian ◽  
Hamed Kashi ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Aadil Hamid ◽  
Sami Ullah Bhat ◽  
Arshid Jehangir

AbstractIt is important to have reliable information on various natural and anthropogenic factors responsible for influencing and shaping stream water quality parameters as long as water resource conservation and management planning are concerned from the local to global scale. Daunting environmental pressures at multiple scales makes this necessity more pronounced owing to the special role of stream ecosystems in providing regional services. Understanding how coupled effect of natural and anthropogenic factors controls stream water quality parameters and how the relationships change over space and time will help policy makers and resource managers to target appropriate scales at watershed level for the quality management of stream waters. This paper sums up the information on various natural and anthropocentric factors as major determinants responsible for conditioning and shaping stream water quality parameters and their simultaneous influence on biota and its use.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 556 ◽  
Author(s):  
Mohamed Elhag ◽  
Ioannis Gitas ◽  
Anas Othman ◽  
Jarbou Bahrawi ◽  
Petros Gikas

Remote sensing applications in water resources management are quite essential in watershed characterization, particularly when mega basins are under investigation. Water quality parameters help in decision making regarding the further use of water based on its quality. Water quality parameters of chlorophyll a concentration, nitrate concentration, and water turbidity were used in the current study to estimate the water quality parameters in the dam lake of Wadi Baysh, Saudi Arabia. Water quality parameters were collected daily over 2 years (2017–2018) from the water treatment station located within the dam vicinity and were correspondingly tested against remotely sensed water quality parameters. Remote sensing data were collected from Sentinel-2 sensor, European Space Agency (ESA) on a satellite temporal resolution basis. Data were pre-processed then processed to estimate the maximum chlorophyll index (MCI), green normalized difference vegetation index (GNDVI) and normalized difference turbidity index (NDTI). Zonal statistics were used to improve the regression analysis between the spatial data estimated from the remote sensing images and the nonspatial data collected from the water treatment plant. Results showed different correlation coefficients between the ground truth collected data and the corresponding indices conducted from remote sensing data. Actual chlorophyll a concentration showed high correlation with estimated MCI mean values with an R2 of 0.96, actual nitrate concentration showed high correlation with the estimated GNDVI mean values with an R2 of 0.94, and the actual water turbidity measurements showed high correlation with the estimated NDTI mean values with an R2 of 0.94. The research findings support the use of remote sensing data of Sentinel-2 to estimate water quality parameters in arid environments.


2021 ◽  
Vol 232 (9) ◽  
Author(s):  
Marlon Heitor Kunst Valentini ◽  
Gabriel Borges dos Santos ◽  
Victória Huch Duarte ◽  
Henrique Sanchez Franz ◽  
Hugo Alexandre Soares Guedes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document