Accelerating Access to in vitro Diagnostics: Urgent Need for Increasing the Speed and Efficiency of Regulatory Review and Policy Development for in vitro Diagnostics for Antimicrobial Resistance and Epidemic Preparedness and Response

2021 ◽  
pp. 73-84
Author(s):  
Rosanna W. Peeling ◽  
David Heymann ◽  
Noah Fongwen ◽  
Oliver Williams ◽  
Joanna Wiecek ◽  
...  
2017 ◽  
Vol 63 (10) ◽  
pp. 1575-1584 ◽  
Author(s):  
Jonathan R Genzen ◽  
Jeffrey S Mohlman ◽  
Jerry L Lynch ◽  
Michael W Squires ◽  
Ronald L Weiss

Abstract BACKGROUND Twenty-five years ago, the Food and Drug Administration (FDA) asserted in a draft document that “home brew” tests—now commonly referred to as laboratory-developed tests (LDTs)—are subject to the same regulatory oversight as other in vitro diagnostics (IVDs)4. In 2010, the FDA began work on developing a proposed framework for future LDT oversight. Released in 2014, the draft guidance sparked an intense debate over potential LDT regulation. While the proposed guidance has not been implemented, many questions regarding LDT oversight remain unresolved. CONTENT This review provides an overview of federal statutes and regulations related to IVDs and clinical laboratory operations, with a focus on those potentially applicable to LDTs and proposed regulatory efforts. Sources reviewed include the Code of Federal Regulations, the Federal Register, congressional hearings, guidance and policy documents, position statements, published literature, and websites. SUMMARY Federal statutes regarding IVDs were passed without substantive evidence of congressional consideration toward the concept of LDTs. The FDA has clear oversight authority over IVD reagents introduced into interstate commerce. A 16-year delay in publicly asserting FDA authority over LDTs, the pursuit of a draft guidance approach toward oversight, and establishment of regulations under the Clinical Laboratory Improvement Amendments of 1988 (CLIA'88) applicable to LDTs contributed to community uncertainty toward LDT oversight. Future regulatory and/or legislative efforts may be required to resolve this uncertainty.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hubert Brueckl ◽  
Astrit Shoshi ◽  
Stefan Schrittwieser ◽  
Barbara Schmid ◽  
Pia Schneeweiss ◽  
...  

AbstractMultifunctional nanoparticles are discussed as versatile probes for homogeneous immunoassays for in-vitro diagnostics. Top-down fabrication allows to combine and tailor magnetic and plasmonic anisotropic properties. The combination of nanoimprint lithography, thin film deposition, and lift-off processing provides a top-down fabrication platform, which is both flexible and reliable. Here, we discuss the material compositions and geometrical designs of monodisperse multicomponent nanoparticles and their consequences on optical and magnetic properties. The rotational hydrodynamics of nanoparticles is measured and considered under the influence of magnetic shape anisotropy in the framework of the Stoner-Wohlfarth theory. The plasmon-optical properties are explained by discrete-dipole finite-element simulations. Rotational dynamical measurements of imprinted nanoprobes for two test proteins demonstrate the applicability as highly sensitive biomolecular nanoprobes.


2008 ◽  
Vol 2008 ◽  
pp. 1-7 ◽  
Author(s):  
Michael Wagner ◽  
Petra Weber ◽  
Wolfgang S. L. Strauss ◽  
Henri-Pierre Lassalle ◽  
Herbert Schneckenburger

The technique of variable-angle total internal reflection fluorescence microscopy (TIRFM) and its application to nanotomography of cell surfaces are described. Present applications include (1) 3D imaging of chromosomes in their metaphase to demonstrate axial resolution in the nanometre range, (2) measurements of cell-substrate topology, which upon cholesterol depletion shows some loosening of cell-substrate contacts, and (3) measurements of cell topology upon photodynamic therapy (PDT), which demonstrate cell swelling and maintenance of focal contacts. The potential of the method for in vitro diagnostics, but also some requirements and limitations are discussed.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Jose Santos ◽  
Alla A Gimbel ◽  
Athanasios Peppas ◽  
James G Truslow ◽  
Daniel Lang ◽  
...  

Microfluidic lab-on-a-chip devices are changing the way that in vitro diagnostics and drug development are conducted, based on the increased precision, miniaturization and efficiency of these systems relative to prior...


Microbiology ◽  
2021 ◽  
Vol 167 (11) ◽  
Author(s):  
Alberto Gonçalves Evangelista ◽  
Jessica Audrey Feijó Corrêa ◽  
João Vitor Garcia dos Santos ◽  
Eduardo Henrique Custódio Matté ◽  
Mônica Moura Milek ◽  
...  

The genus Salmonella is closely associated with foodborne outbreaks and animal diseases, and reports of antimicrobial resistance in Salmonella species are frequent. Several alternatives have been developed to control this pathogen, such as cell-free supernatants (CFS). Our objective here was to evaluate the use of lactic acid bacteria (LAB) CFS against Salmonella in vitro. Seventeen strains of LAB were used to produce CFS, and their antimicrobial activity was screened towards six strains of Salmonella . In addition, CFS were also pH-neutralized and/or boiled. Those with the best results were lyophilized. MICs of lyophilized CFS were 11.25–22.5 g l–1. Freeze-dried CFS were also used to supplement swine and poultry feed (11.25 g kg–1) and in vitro simulated digestion of both species was performed, with Salmonella contamination of 5×106 and 2×105 c.f.u. g−1 of swine and poultry feed, respectively. In the antimicrobial screening, all acidic CFS were able to inhibit the growth of Salmonella . After pH neutralization, Lactobacillus acidophilus Llorente, Limosilactobacillus fermentum CCT 1629, Lactiplantibacillus plantarum PUCPR44, Limosilactobacillus reuteri BioGaia, Lacticaseibacillus rhamnosus ATCC 7469 and Pediococcus pentosaceus UM116 CFS were the only strains that partially maintained their antimicrobial activity and, therefore, were chosen for lyophilization. In the simulated swine digestion, Salmonella counts were reduced ≥1.78 log c.f.u. g–1 in the digesta containing either of the CFS. In the chicken simulation, a significant reduction was obtained with all CFS used (average reduction of 0.59±0.01 log c.f.u. ml–1). In general, the lyophilized CFS of L. fermentum CCT 1629, L. rhamnosus ATCC 7469 and L. acidophilus Llorente presented better antimicrobial activity. In conclusion, CFS show potential as feed additives to control Salmonella in animal production and may be an alternative to the use of antibiotics, minimizing problems related to antimicrobial resistance.


Nano Letters ◽  
2017 ◽  
Vol 17 (9) ◽  
pp. 5572-5579 ◽  
Author(s):  
Zhuangqiang Gao ◽  
Haihang Ye ◽  
Dianyong Tang ◽  
Jing Tao ◽  
Sanaz Habibi ◽  
...  

Radiology ◽  
2015 ◽  
Vol 277 (3) ◽  
pp. 644-661 ◽  
Author(s):  
Paul F. Laeseke ◽  
Ru Chen ◽  
R. Brooke Jeffrey ◽  
Teresa A. Brentnall ◽  
Jürgen K. Willmann

2016 ◽  
Vol 34 (3) ◽  
pp. 75-79 ◽  
Author(s):  
Allison D Oakes ◽  
Tyler R. Desmarais ◽  
William A. Powell ◽  
Charles A. Maynard

Tissue culture of plants has many applications, from producing genetically identical horticultural varieties, to production of secondary metabolites, to virus indexing, and most relevantly, developing novel traits by genetic transformation. Using Agrobacterium-mediated transformation on somatic embryos, blight-resistant American chestnuts [Castanea dentata (Marsh.) Borkh.] have been developed as shoot cultures in plant tissue culture. Rooting tissue-cultured shoots and acclimatizing the rooted plantlets are key steps in tree production. In this study, in vitro and ex vitro rooting methods were compared. The ex vitro method resulted in a lower initial rooting percentage but an overall higher survival percentage, resulting in higher potted plant production. The higher survival was likely due to partial acclimatization taking place before the plantlets were transplanted into potting mix. After 8 weeks, plantlets rooted via the ex vitro method were taller, and had more, and larger, leaves than the in vitro-rooted plantlets. These trees are currently in high demand for inoculation studies for federal regulatory review and eventually for restoration of this keystone species to its native habitat.


Sign in / Sign up

Export Citation Format

Share Document