Rock joint sealing experiments using an ultra fine cement grout

2021 ◽  
pp. 257-262
Author(s):  
Rajinder Bhasin ◽  
Per Magnus Johansen ◽  
Nick Barton ◽  
Axel Makurat
Keyword(s):  
Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1928 ◽  
Author(s):  
Faham Tahmasebinia ◽  
Chengguo Zhang ◽  
Ismet Canbulat ◽  
Samad Sepasgozar ◽  
Serkan Saydam

Coal burst occurrences are affected by a range of mining and geological factors. Excessive slipping between the strata layers may release a considerable amount of strain energy, which can be destructive. A competent strata is also more vulnerable to riveting a large amount of strain energy. If the stored energy in the rigid roof reaches a certain level, it will be released suddenly which can create a serious dynamic reaction leading to coal burst incidents. In this paper, a new damage model based on the modified thermomechanical continuum constitutive model in coal mass and the contact layers between the rock and coal mass is proposed. The original continuum constitutive model was initially developed for the cemented granular materials. The application of the modified continuum constitutive model is the key aspect to understand the momentum energy between the coal–rock interactions. The transformed energy between the coal mass and different strata layers will be analytically demonstrated as a function of the rock/joint quality interaction conditions. The failure and post failure in the coal mass and coal–rock joint interaction will be classified by the coal mass crushing, coal–rock interaction damage and fragment reorganisation. The outcomes of this paper will help to forecast the possibility of the coal burst occurrence based on the interaction between the coal mass and the strata layers in a coal mine.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3563
Author(s):  
Mathieu Robineau ◽  
Valérie Deydier ◽  
Didier Crusset ◽  
Alexandre Bellefleur ◽  
Delphine Neff ◽  
...  

Carbon steel coupons were buried in a specific low-pH cement grout designed for radioactive waste disposal and left 6 months in anoxic conditions at 80 °C. The corrosion product layers were analyzed by µ-Raman spectroscopy, XRD, and SEM. They proved to be mainly composed of iron sulfides, with magnetite as a minor phase, mixed with components of the grout. Average corrosion rates were estimated by weight loss measurements between 3 and 6 µm yr−1. Corrosion profiles revealed local degradations with a depth up to 10 µm. It is assumed that the heterogeneity of the corrosion product layer, mainly composed of conductive compounds (FeS, Fe3S4, and Fe3O4), promotes the persistence of corrosion cells that may lead to locally aggravated degradations of the metal. New cement grouts, characterized by a slightly higher pH and a lower sulfide concentration, should then be designed for the considered application.


Author(s):  
Leila Hashemian ◽  
Vinicius Afonso Velasco Rios ◽  
Alireza Bayat

This study investigated the performance of different materials in a micro-trench composite backfilling design. Laboratory tests were conducted to evaluate the effect of cold temperatures and freeze/thaw cycles on a cement grout and seven preparatory cold asphalt mixes. To compare the performance of cold mix asphalt and epoxy grout with hot mix asphalt as the host material, rutting tests and dynamic modulus tests at different loading frequencies and temperatures were conducted. Finally, laboratory scale micro-trench samples were prepared using different backfilling materials and were loaded using a wheel tracker after freeze/thaw conditioning. The results showed that cement grout could effectively be used to secure the conduit inside the trench. It was also concluded that using high-quality cold mix asphalt, a compatible material with hot mix asphalt, could improve micro-trench durability compared with epoxy grout.


Author(s):  
Pinnaduwa H. S. W. Kulatilake ◽  
Shi-Gui Du ◽  
Mawuko Luke Yaw Ankah ◽  
Rui Yong ◽  
Desmond Talamwin Sunkpal ◽  
...  

2014 ◽  
Vol 988 ◽  
pp. 502-507 ◽  
Author(s):  
Shao Bo Chai ◽  
Jian Chun Li ◽  
Hai Bo Li ◽  
Ya Qun Liu

According to the displacement discontinuity method and the conservation of momentum at the wave fronts, analysis for cylindrical P-wave propagation across a linear elastic rock joint is carried out. Considering the energy variation for wave propagation in one medium, the wave propagation equation was derived and expressed in an iterative form. The transmission and reflection coefficients are then obtained from the equation. By verification, the results agree very well with those from the existing results.


2018 ◽  
Vol 23 (2) ◽  
pp. 541-548 ◽  
Author(s):  
Nan Wu ◽  
Zhende Zhu ◽  
Cong Zhang ◽  
Zhihua Luo

Author(s):  
M.J. Boulon ◽  
A.P.S. Selvadurai ◽  
H. Benjelloun ◽  
B. Feuga

Sign in / Sign up

Export Citation Format

Share Document