Effect of manufacturing parameters on the mechanical properties of filament wound composite materials

2021 ◽  
pp. 377-385
Author(s):  
P.S. Chatzinas ◽  
E.P. Bilalis ◽  
A.Z. Papadakis ◽  
N.G. Tsouvalis
2013 ◽  
Vol 663 ◽  
pp. 426-430
Author(s):  
Zhen Yu Zhou ◽  
Qi Wen Xue

A numerical model is given to identify equivalent parameters of composite materials, using BP neural network algorithm. Taking Filament-wound composite pressure vessels as the research object, finite element models are first constructed .Getting node displacements as network training samples, the mechanical parameters as output information of network for effective training, the equivalent material parameters can be obtained. The satisfactory numerical validation is given and results show that the proposed method can identify the equivalent modulus and the equivalent Poisson’s ratio of the Filament-wound composite pressure vessels with precision. The computational efficiency is improved with BP neural network.


Author(s):  
P C Tse ◽  
S R Reid ◽  
S P Ng

Closed-form solutions from complementary strain energy are derived for the spring stiffnesses of mid-surface symmetric, filament-wound, composite circular rings under unidirectional loading. A three-dimensional finite element analysis (FEA) including the effects of transverse shear has also been applied to study the problem. Four > 45° and four > 75° E-glass/epoxy composite rings of odd numbers of covers were tested. Comparisons of the results obtained from the two methods with experimental data are made and the results are found to be in good agreement. The FEA prediction of stiffness is always higher than the theoretical result. The relationships between the spring stiffnesses and the winding angles and geometry of the filament-wound composite ring are considered and discussed.


1996 ◽  
Author(s):  
J. Wlodarski ◽  
Charles Pergantis ◽  
Thomas Mulkern ◽  
James Kleinmeyer

Sign in / Sign up

Export Citation Format

Share Document