Industrial Applications of Fiber Lasers

Fiber Lasers ◽  
2016 ◽  
pp. 303-308
2020 ◽  
Vol 16 (3) ◽  
pp. 441-457
Author(s):  
Chih-Hsien Cheng ◽  
Gong-Ru Lin

This paper emphasizes on overviewing the developing progress of the state-of-the-art carbon nanomaterial-based saturable absorbers for passively mode-locked fiber lasers, including carbon nanotube (CNT), graphene, graphite and other carbon nanomaterials. With reviewing the performances of these proposed candidates, the characteristic parameters required for initiating and stabilizing the passive mode-locked fiber lasers are summarized for comparison and discussion. At first, the basic characteristics such as saturation intensity and self-amplitude-modulation (SAM) coefficients of the CNT material with different-wall types are discussed in detail. In comparison, the single-wall CNT possesses optical nonlinearity better than double-wall CNT, whereas the doublewall CNT exhibits wavelength tenability and the multi-wall CNT fails to initiate mode-locking. Subsequently, different graphene saturable absorbers with slightly changing their optical properties made by various fabrication technologies are introduced to take over the role of typical CNT saturable absorber. The detailed analyses on graphene saturable absorber for developing various types of passively mode-locked fiber lasers are overviewed. At last, other new-aspect graphite and carbon nanomaterials related saturable absorbers have emerged because they reveal similar optical nonlinearity with graphene but exhibit cost-effectiveness and easy-production. When changing saturable absorber from graphene to other carbon nanomaterials, the modulation depth is decreased but the saturation intensity is concurrently enlarged because of the disordered structure with increased interlayer spacing and reduced graphene content. At the current stage, selecting carbon nanomaterials with high nonlinear absorbance and low saturated intensity for large SAM coefficient is the golden rule for passively mode-locked the fiber lasers in future academic and industrial applications.


2013 ◽  
Vol 41 (9) ◽  
pp. 668
Author(s):  
Hakaru MIZOGUCHI ◽  
Takashi MATSUNAGA ◽  
Takashi SAITOU

2014 ◽  
Vol 28 (12) ◽  
pp. 1442009 ◽  
Author(s):  
Michalis N. Zervas

In this paper, we summarize the fundamental properties and review the latest developments in high power ytterbium-doped fiber (YDF) lasers. The review is focused primarily on the main fiber laser configurations and the related cladding pumping issues. Special attention is placed on pump combination techniques and the parameters that affect the brightness enhancements observed in high power fiber lasers. The review also includes the major limitations imposed by fiber nonlinearities and other parasitic effects, such as optical damage, modal instabilities and photodarkening. The paper summarizes the power evolution in continuous-wave (CW) and pulsed YDF lasers and their impact on material processing and other industrial applications.


Author(s):  
C. F. Oster

Although ultra-thin sectioning techniques are widely used in the biological sciences, their applications are somewhat less popular but very useful in industrial applications. This presentation will review several specific applications where ultra-thin sectioning techniques have proven invaluable.The preparation of samples for sectioning usually involves embedding in an epoxy resin. Araldite 6005 Resin and Hardener are mixed so that the hardness of the embedding medium matches that of the sample to reduce any distortion of the sample during the sectioning process. No dehydration series are needed to prepare our usual samples for embedding, but some types require hardening and staining steps. The embedded samples are sectioned with either a prototype of a Porter-Blum Microtome or an LKB Ultrotome III. Both instruments are equipped with diamond knives.In the study of photographic film, the distribution of the developed silver particles through the layer is important to the image tone and/or scattering power. Also, the morphology of the developed silver is an important factor, and cross sections will show this structure.


Sign in / Sign up

Export Citation Format

Share Document