The Metal/Carbon Nanocomposites Modification With Use of Ammonium Polyphosphate for the Application as Nanomodifier of Epoxy Resins

2018 ◽  
pp. 161-174
Author(s):  
R. V. Mustakimov ◽  
V. I. Kodolov ◽  
I. N. Shabanova ◽  
N. S. Terebova
2009 ◽  
Vol 94 (4) ◽  
pp. 625-631 ◽  
Author(s):  
Jun-Sheng Wang ◽  
Yun Liu ◽  
Hai-Bo Zhao ◽  
Jiang Liu ◽  
De-Yi Wang ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3221
Author(s):  
Feiyue Wang ◽  
Jiahao Liao ◽  
Long Yan ◽  
Hui Liu

A novel diaminodiphenylmethane (DDM) modified ammonium polyphosphate (APP) flame retardant, DDP, was successfully synthesized via ion-exchange reaction. DDP was introduced into epoxy resins (EPs) to reduce flammability. A comparable level of DDP exerts better flame-retardant and smoke suppression efficiencies in EP than APP. An EP blend containing 15 wt% DDP displays a limiting oxygen index (LOI) value of 37.1% and a UL 94 V-0 rating, and further exhibits a 32.3% reduction in total heat release and a 48.0% reduction in total smoke production compared with pure EP. The presence of DDP greatly facilitates char formation during combustion, and the char mass from thermal decomposition of an EP blend is 37.8% smaller than that of an EP blend containing 15 wt% DDP at 800 °C. The incorporation of DDP into EP blends has a smaller impact on the glass transition temperature and tensile strength than those of a comparable level of APP. This reflects the better compatibility of DDP with the EP matrix compared with that for APP.


2018 ◽  
Vol 30 (2) ◽  
pp. 264-278 ◽  
Author(s):  
Xiwei Xu ◽  
Sheng Wang ◽  
Songqi Ma ◽  
Wangchao Yuan ◽  
Qiong Li ◽  
...  

Author(s):  
J. G. Adams ◽  
M. M. Campbell ◽  
H. Thomas ◽  
J. J. Ghldonl

Since the introduction of epoxy resins as embedding material for electron microscopy, the list of new formulations and variations of widely accepted mixtures has grown rapidly. Described here is a resin system utilizing Maraglas 655, Dow D.E.R. 732, DDSA, and BDMA, which is a variation of the mixtures of Lockwood and Erlandson. In the development of the mixture, the Maraglas and the Dow resins were tested in 3 different volumetric proportions, 6:4, 7:3, and 8:2. Cutting qualities and characteristics of stability in the electron beam and image contrast were evaluated for these epoxy mixtures with anhydride (DDSA) to epoxy ratios of 0.4, 0.55, and 0.7. Each mixture was polymerized overnight at 60°C with 2% and 3% BDMA.Although the differences among the test resins were slight in terms of cutting ease, general tissue preservation, and stability in the beam, the 7:3 Maraglas to D.E.R. 732 ratio at an anhydride to epoxy ratio of 0.55 polymerized with 3% BDMA proved to be most consistent. The resulting plastic is relatively hard and somewhat brittle which necessitates trimming and facing the block slowly and cautiously to avoid chipping. Sections up to about 2 microns in thickness can be cut and stained with any of several light microscope stains and excellent quality light photomicrographs can be taken of such sections (Fig. 1).


Author(s):  
K. Chien ◽  
R.L. Van de Velde ◽  
R.C. Heusser

Sectioning quality of epoxy resins can be improved by the addition of a 1% silicone 200 fluid (Dow Corning), however this produces a softer block. To compensate, a harder plastic has been used for embedding various tissues encountered in our pathology laboratory. Exact amounts of the plastic mixture can be directly made up for embedding as shown: The chart reveals a Poly/Bed 812 (WPE 145) to anhydride ratio of 1:0.7 and a NMA to DDSA ratio of 7:3. 1% silicone fluid is added to above mixtures.Due to impurities within the DDSA and NMA, the polymerized epoxy blocks vary in darkness and appear to affect sectioning quality. After discussing this problem with Polysciences Inc., they have agreed to purify their anhydrides in an effort to standardize the consistency of the plastic.


Sign in / Sign up

Export Citation Format

Share Document