Optimized Hexagon-Based Deployment for Large-Scale Ubiquitous Sensor Networks

2018 ◽  
pp. 107-142
Author(s):  
Fadi Al-Turjman
2011 ◽  
Author(s):  
Young-Sik Jeong ◽  
Eun-Ha Song ◽  
Gab-Byung Chae ◽  
Min Hong ◽  
Doo-Soon Park

2010 ◽  
Vol 25 (2) ◽  
pp. 48-59 ◽  
Author(s):  
Young-Sik Jeong ◽  
Eun-Ha Song ◽  
Gab-Byung Chae ◽  
Min Hong ◽  
Doo-Soon Park

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1636
Author(s):  
Tomas Gonzalez ◽  
Joaquim Porte ◽  
Jordi Male ◽  
Joan Navarro ◽  
Josep M. Maso ◽  
...  

Despite high costs and lengthy deployments, satellite communications have traditionally been used to provide coverage in remote areas. However, given the fact that there is no radio infrastructure available in these areas, Near Vertical Incidence Skywave (NVIS) technology has positioned itself as an attractive alternative to communicate with low-power nodes in remote areas. This type of communication works in the HF frequency range complying with STANAG and MIL-STD standards, which define a physical layer for scenarios that differ from NVIS and low-power communication. The purpose of this paper was to present the definition of a new communication physical layer based on single-carrier frequency-domain equalization (SC-FDE) based on these standards but adapted to the ionospheric communication channel. This physical layer was compared to an OFDM-based layer from a previous study. The experiments performed show that this new approach achieves better results than OFDM in terms of a higher signal quality with a higher specific BER probability. Finally, this layer was also used in the theoretical design of an NVIS gateway to link sensor network devices spanning large-scale remote areas in a secure manner in the context of ubiquitous sensor networks (USN).


Author(s):  
Abdelhady M. Naguib ◽  
Shahzad Ali

Background: Many applications of Wireless Sensor Networks (WSNs) require awareness of sensor node’s location but not every sensor node can be equipped with a GPS receiver for localization, due to cost and energy constraints especially for large-scale networks. For localization, many algorithms have been proposed to enable a sensor node to be able to determine its location by utilizing a small number of special nodes called anchors that are equipped with GPS receivers. In recent years a promising method that significantly reduces the cost is to replace the set of statically deployed GPS anchors with one mobile anchor node equipped with a GPS unit that moves to cover the entire network. Objectives: This paper proposes a novel static path planning mechanism that enables a single anchor node to follow a predefined static path while periodically broadcasting its current location coordinates to the nearby sensors. This new path type is called SQUARE_SPIRAL and it is specifically designed to reduce the collinearity during localization. Results: Simulation results show that the performance of SQUARE_SPIRAL mechanism is better than other static path planning methods with respect to multiple performance metrics. Conclusion: This work includes an extensive comparative study of the existing static path planning methods then presents a comparison of the proposed mechanism with existing solutions by doing extensive simulations in NS-2.


2009 ◽  
Vol 13 (1) ◽  
pp. 40-43
Author(s):  
Shaoliang Peng ◽  
Guoliang Xing ◽  
Shanshan Li ◽  
Weijia Jia ◽  
Yuxing Peng

Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 218
Author(s):  
Ala’ Khalifeh ◽  
Khalid A. Darabkh ◽  
Ahmad M. Khasawneh ◽  
Issa Alqaisieh ◽  
Mohammad Salameh ◽  
...  

The advent of various wireless technologies has paved the way for the realization of new infrastructures and applications for smart cities. Wireless Sensor Networks (WSNs) are one of the most important among these technologies. WSNs are widely used in various applications in our daily lives. Due to their cost effectiveness and rapid deployment, WSNs can be used for securing smart cities by providing remote monitoring and sensing for many critical scenarios including hostile environments, battlefields, or areas subject to natural disasters such as earthquakes, volcano eruptions, and floods or to large-scale accidents such as nuclear plants explosions or chemical plumes. The purpose of this paper is to propose a new framework where WSNs are adopted for remote sensing and monitoring in smart city applications. We propose using Unmanned Aerial Vehicles to act as a data mule to offload the sensor nodes and transfer the monitoring data securely to the remote control center for further analysis and decision making. Furthermore, the paper provides insight about implementation challenges in the realization of the proposed framework. In addition, the paper provides an experimental evaluation of the proposed design in outdoor environments, in the presence of different types of obstacles, common to typical outdoor fields. The experimental evaluation revealed several inconsistencies between the performance metrics advertised in the hardware-specific data-sheets. In particular, we found mismatches between the advertised coverage distance and signal strength with our experimental measurements. Therefore, it is crucial that network designers and developers conduct field tests and device performance assessment before designing and implementing the WSN for application in a real field setting.


Sign in / Sign up

Export Citation Format

Share Document