High-Temperature Electronic Materials

2008 ◽  
pp. 87-100
2010 ◽  
Vol 2010 (HITEC) ◽  
pp. 000214-000221
Author(s):  
Bob Hunt

This paper presents the development and qualification of high temperature electronic module packaging technology to service the requirements for extended and reliable operation at 225°C (437°F) for applications in the Oil & Gas, Automotive and Aerospace markets. It also covers the application of this technology to the first in a range of DC-DC converter modules and is based on Cissoid's ‘ETNA’ semiconductor components.


2016 ◽  
Vol 2016 (HiTEC) ◽  
pp. 000196-000206
Author(s):  
Martin Wickham ◽  
Kate Clayton ◽  
Ana Robador ◽  
Chris Hunt ◽  
Robin Pittson ◽  
...  

AbstractA collaborative research programme between project partners Microsemi, the National Physical Laboratory (NPL) and Gwent Electronic Materials (GEM), has successfully developed innovative materials specifically designed to offer an alternative for high Pb or Au content materials to increase the operating temperature of electronic assemblies. Currently, for electronic assemblies to operate at high temperature, they must use a high lead solder or a very expensive gold based solder to withstand these temperatures. The ELCOSINT project has developed an inexpensive lead-free alternative for joining high temperature electronics suitable for operating at temperatures above 250°C utilising standard surface mount assembly processes. This paper summarises the work undertaken by the authors to develop and better understand this new family of electrical interconnection materials. The project brought together a materials supplier (GEM – Gwent Electronic Materials), an end-user (MSL - Microsemi) and an technology research organisation (NPL – National Physical Laboratory) to jointly develop, test and implement in production, the solution based on silver-loaded silicone materials. This paper focuses on the testing and materials evaluation undertaken at NPL to determine the long term performance of these alternative materials including high temperature ageing up to 300°C, thermal cycling and damp heat testing. Details of the shear strength and electrical performance of interconnects between the substrates and components during the test regimes are given. The manufacturing process is outlined including details of the test vehicles utilised. The processing temperature for the conductive adhesive is 250°C which offers additional advantages in potential improvements in component and substrate reliability compared to soldered solutions which would typically be processed at temperatures above 300°C.


2011 ◽  
Vol 2011 (HITEN) ◽  
pp. 000251-000254
Author(s):  
S T Riches ◽  
C Johnston ◽  
M Sousa ◽  
P Grant

Silicon on Insulator (SOI) device technology is fulfilling a niche requirement for electronics that functions satisfactorily at operating temperatures of >200°C. Most of the reliability data on the high temperature endurance of the devices is generated on the device itself with little attention being paid to the packaging technology around the device. Similarly, most of the reliability data generated on high temperature packaging technologies uses testpieces rather than real devices, which restricts any conclusions on long term electrical performance. This paper presents results of high temperature endurance studies on SOI devices combined with high temperature packaging technologies relevant to signal conditioning and processing functions for sensors in down-well and aero-engine applications. The endurance studies have been carried out for up to 7,056 hours at 250°C, with functioning devices being tested periodically at room temperature, 125°C and 250°C. Different die attach and wire bond options have been included in the study and the performance of multiplexers, transistors, bandgap voltage, oscillators and voltage regulators functional blocks have been characterised. This work formed part of the UPTEMP project which was set-up with support from UK Technology Strategy Board and the EPSRC. The project brought together a consortium of end-users (Sondex Wireline and Vibro-Meter UK), electronic module manufacturers (GE Aviation Systems Newmarket) and material suppliers (Gwent Electronic Materials and Thermastrate Ltd) with Oxford University-Materials Department, the leading UK high temperature electronics research centre.


Sign in / Sign up

Export Citation Format

Share Document