Ultrasonic-assisted nano Ag-Al alloy sintering to enable high-temperature electronic interconnections

Author(s):  
Canyu Liu ◽  
Allan Liu ◽  
Yi Zhong ◽  
Stuart Robertson ◽  
Zhaoxia Zhou ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 526
Author(s):  
Zhengyuan Li ◽  
Lijia Chen ◽  
Haoyu Zhang ◽  
Siyu Liu

The oxidation behavior and microstructural evolution of the nanostructure of Fe-Cr-Al oxide dispersion strengthened (ODS) alloys prepared by spark plasma sintering were investigated by high-temperature oxidation experiments in air at 1200 °C for 100 h. The formation of Al2O3 scale was observed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) line scans. The oxidation rate of Fe-Cr-Al ODS alloys is lower than that of conventional Fe-Cr-Al alloys, and the oxide layer formed on the Fe-Cr-Al alloy appeared loose and cracked, whereas the oxide layer formed on the Fe-Cr-Al ODS alloys was adherent and flat. This is due to the high density of dispersed nano-oxides hindering the diffusion of Al element and the formation of vacancies caused by them. In addition, the nano-oxides could also adhere to the oxide layer. Besides, the microstructure of the Fe-Cr-Al ODS alloy had excellent stability during high-temperature oxidation.


2013 ◽  
Vol 651 ◽  
pp. 198-203
Author(s):  
Xiu Ling Wang ◽  
Li Ying Yang ◽  
Shou Ren Wang

It is significant and necessary to carry out the research and development of self-lubricating bearing. The current study of metal matrix self-lubricating bearing materials is summarized. A new type of high temperature self-lubricating Ti-Al alloy bearing materials is proposed. It is light, anti-friction, anti-corrosion and high temperature resistance (600 °C). The future trend is introduced in the end of this paper.


1994 ◽  
pp. 321-324
Author(s):  
Mieko OKAMOTO ◽  
Isao Tomizuka ◽  
Akimitsu MIYAZAKI

2010 ◽  
Vol 2010 (HITEC) ◽  
pp. 000214-000221
Author(s):  
Bob Hunt

This paper presents the development and qualification of high temperature electronic module packaging technology to service the requirements for extended and reliable operation at 225°C (437°F) for applications in the Oil & Gas, Automotive and Aerospace markets. It also covers the application of this technology to the first in a range of DC-DC converter modules and is based on Cissoid's ‘ETNA’ semiconductor components.


Sign in / Sign up

Export Citation Format

Share Document