Gibbsian equilibrium of the single-wave–particle system*

Keyword(s):  
2021 ◽  
Vol 31 (8) ◽  
pp. 083104
Author(s):  
J. V. Gomes ◽  
M. C. de Sousa ◽  
R. L. Viana ◽  
I. L. Caldas ◽  
Y. Elskens

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Rabinovitch ◽  
Y. Biton ◽  
D. Braunstein ◽  
I. Aviram ◽  
R. Thieberger ◽  
...  

AbstractIn the last several years, quite a few papers on the joint question of transport, tortuosity and percolation have appeared in the literature, dealing with passage of miscellaneous liquids or electrical currents in different media. However, these methods have not been applied to the passage of action potential in heart fibrosis (HF), which is crucial for problems of heart arrhythmia, especially of atrial tachycardia and fibrillation. In this work we address the HF problem from these aspects. A cellular automaton model is used to analyze percolation and transport of a distributed-fibrosis inflicted heart-like tissue. Although based on a rather simple mathematical model, it leads to several important outcomes: (1) It is shown that, for a single wave front (as the one emanated by the heart's sinus node), the percolation of heart-like matrices is exactly similar to the forest fire case. (2) It is shown that, on the average, the shape of the transport (a question not dealt with in relation to forest fire, and deals with the delay of action potential when passing a fibrotic tissue) behaves like a Gaussian. (3) Moreover, it is shown that close to the percolation threshold the parameters of this Gaussian behave in a critical way. From the physical point of view, these three results are an important contribution to the general percolation investigation. The relevance of our results to cardiological issues, specifically to the question of reentry initiation, are discussed and it is shown that: (A) Without an ectopic source and under a mere sinus node operation, no arrhythmia is generated, and (B) A sufficiently high refractory period could prevent some reentry mechanisms, even in partially fibrotic heart tissue.


2021 ◽  
Vol 22 (11) ◽  
pp. 5483
Author(s):  
Luisa F. Bustamante-Jaramillo ◽  
Celia Ramos ◽  
Cristina Martín-Castellanos

Cyclins and CDKs (Cyclin Dependent Kinases) are key players in the biology of eukaryotic cells, representing hubs for the orchestration of physiological conditions with cell cycle progression. Furthermore, as in the case of meiosis, cyclins and CDKs have acquired novel functions unrelated to this primal role in driving the division cycle. Meiosis is a specialized developmental program that ensures proper propagation of the genetic information to the next generation by the production of gametes with accurate chromosome content, and meiosis-specific cyclins are widespread in evolution. We have explored the diversification of CDK functions studying the meiosis-specific Crs1 cyclin in fission yeast. In addition to the reported role in DSB (Double Strand Break) formation, this cyclin is required for meiotic S-phase progression, a canonical role, and to maintain the architecture of the meiotic chromosomes. Crs1 localizes at the SPB (Spindle Pole Body) and is required to stabilize the cluster of telomeres at this location (bouquet configuration), as well as for normal SPB motion. In addition, Crs1 exhibits CDK(Cdc2)-dependent kinase activity in a biphasic manner during meiosis, in contrast to a single wave of protein expression, suggesting a post-translational control of its activity. Thus, Crs1 displays multiple functions, acting both in cell cycle progression and in several key meiosis-specific events.


2008 ◽  
Vol 40 (3) ◽  
pp. 952-967 ◽  
Author(s):  
Wen-Xin Qin ◽  
Chun-Lan Xu ◽  
Xin Ma

2001 ◽  
Vol 64 (2) ◽  
Author(s):  
M-C. Firpo ◽  
F. Doveil ◽  
Y. Elskens ◽  
P. Bertrand ◽  
M. Poleni ◽  
...  

2001 ◽  
Author(s):  
Katrin Hessner ◽  
◽  
Konstanze Reichert ◽  
Jurgen Dittmer ◽  
Heinz Gunther ◽  
...  
Keyword(s):  

1981 ◽  
Author(s):  
Olin J. Stephens ◽  
Karl L. Kirkman ◽  
Robert S. Peterson

The 1979 Fastnet focused attention upon yacht capsizes and resulting damage and loss of life. A classical stability analysis does not clearly reveal some of the characteristics of the modern racing yacht which may exacerbate a capsizing tendency. A review of the mechanism of a single-wave-impact capsize reveals inadequacies in static methods of stability analysis and hints at a connection between recent design trends and an increased frequency of capsize. The paper traces recent design trends, relates these to capsizing by a description of the dynamic mechanism of breaking wave impact, and outlines the unusual oceanography of the 1979 Fastnet which led to a heightened incidence of capsize.


Sign in / Sign up

Export Citation Format

Share Document