Capital goods and their total energy costs

2003 ◽  
pp. 45-52
2016 ◽  
Vol 90 (9-12) ◽  
pp. 2655-2667 ◽  
Author(s):  
Oussama Masmoudi ◽  
Alice Yalaoui ◽  
Yassine Ouazene ◽  
Hicham Chehade

1979 ◽  
Vol 80 (2) ◽  
pp. 271-293 ◽  
Author(s):  
Bruce Hannon
Keyword(s):  

Facilities ◽  
1999 ◽  
Vol 17 (12/13) ◽  
pp. 452-461 ◽  
Author(s):  
A.H. Boussabaine ◽  
R.J. Kirkham ◽  
R.J. Grew
Keyword(s):  

2020 ◽  
Vol 17 (2) ◽  
pp. 172-181 ◽  
Author(s):  
V. A. Nikolaev

Introduction. In order to the road to be durable at the minimum necessary cost for its construction, the topsoil should be carefully removed without disturbing the soil located under the topsoil. The problem of cheapening the roads construction without reducing their quality can be solved by creating a continuous unit for the formation of the underlying layer. The main working elemens of the unit are shovels. The blade of the cantilever knife fixed on the shovel cuts the topsoil from the bottom. It is located at the angle of 45 ° to the direction of movement of the shovel and also has a sharpening angle. The front angle of the blade of the cantilever knife.The method of research. The cantilever knife is divided into the elements: the edge of the blade, the upper face of the blade, the surface of the cantilever knife, a lower plane. The consecutive impact of many cantilever knives on the ground within the operating unit width with the ground of one notional cantilever knife at a distance necessary for the excavation of one cubic meter of soil was replaced. The interacting forces of a notional cantilever knife with soil are called notional forces. The methodology of calculating energy costs when penetrating the edge of the blade of the cantilever knife into the soil is presented: to separate a layer from the body of the soil, to create a gap in the body of the soil, to overcome the friction of the soil against the edge of a blade of a cantilever knife. The total energy consumption during the interaction of a edge of a blade of a cantilever knife in the soil excavation with a volume of one cubic meter was obtained by adding the particular energy consumption.Results. Based on the developed calculation method, the distance at which a cantilever knife has to move to excavate one cubic meter of soil, and the time of this movement determined. The energy costs are calculated when penetrating the edge of the blade of the cantilever knife into the soil: to separate a layer from the body of soil, to create a gap in the body of soil, to overcome the friction of the soil against the edge of a blade of a cantilever knife. The total energy consumption and their structure during the interaction of the edge of a blade of a cantilever knife with the soil during the soil excavation with a volume of one cubic meter are determined.Conclusion. The total energy consumption during the interaction of an edge of a blade of a cantilever knife with the soil during the development of soil with a volume of one cubic meter is about 7 thousand J/cubic meter. In the energy costs structure during the interaction of an edge of a blade of a cantilever knife with the soil, energy costs prevail to overcome the friction of the soil against an edge of a blade. To determine the total energy consumption for cutting soil with cantilever knives shovels of the unit for removing the upper soil layer from the underlying layer of a road, it is necessary to analyze the interaction of other elements of cantilever knives with the soil.Financial transparency: the authors have no financial interest in the presented materials or methods. There is no conflict of interest.


2020 ◽  
Vol 17 (5) ◽  
pp. 598-610
Author(s):  
V. A. Nikolaev

Introduction. To solve the problem of accelerating the construction of roads, improving their quality, it is advisable to use a continuous action unit to form a underlying layer. The main working elements of this unit are buckets, which cut off the soil layer from below and side. At the same time, the bottom knife cuts off the ground layer from below, the right knife - on the side, and the console knife partially cuts the top layer of soil from below for the next bucket. In particular, the analysis of interaction with the ground of the bottom knife of the continuous action unit is of theoretical and practical interest. To do this, the lower knife is divided into elements and the interaction of these elements with the soil is analyzed. The consistent impact on the soil of many bottom knives, within the width of the grip of the unit, is replaced by the impact on the ground of one conventional bottom knife at a distance necessary for the development of one cubic meter of soil. The forces of interaction of the conventional bottom knife with the soil are called conditional forces.The method of research. The method of calculating energy costs when introducing the bottom knife into the ground is presented. In general, when introducing the bottom knife in the ground, there are energy costs: to separate the soil, to overcome the friction of the ground on the edge of the blade, to overcome the pressure of the ground on the face, to the rise of the ground, to the vertical acceleration of the ground by the phase, to overcome the friction of the ground on the face, to overcome the friction of the ground on the surface, to overcome the friction of the ground on the lower plane. The total energy costs of interacting with a one cubic metre soil are derived from the addition of private energy costs. The method of calculating the horizontal longitudinal force needed to move the bottom knife is given.Results. On the basis of the developed method, energy costs are calculated in the introduction of the lower knife: on the separation of the soil, on overcoming the friction of the ground on the edge of the blade, on overcoming the pressure of the ground on the face, on the rise of the ground, on the vertical acceleration of the ground face, on overcoming the friction of the ground on the fascia, to overcome the friction of the ground on the lower plane. Energy costs to overcome the friction of the ground on the surface of the bottom knife are zero, as the soil flies over it. The total energy costs of the bottom knife interact with the soil of one cubic meter. The horizontal long-lived force needed to move the bottom knife has been determined.Conclusion. As a result of the calculations: the energy needed to cut the ground with the bottom knives, about 5 kJ/cube m., horizontal longitudinal force needed to move the lower knife - 16 N. To determine the total energy costs of moving the boiler unit to remove the top layer of soil from the underlying layer of the road, you need to analyze the interaction with the soil of other elements of the bucket.


2020 ◽  
Vol 17 (4) ◽  
pp. 452-463
Author(s):  
V. A. Nikolayev ◽  
D. I. Troshin

Introduction. To solve the problem of accelerating the construction of roads, improving their quality, it is advisable to use a continuous action unit to form a underlying layer. The main working bodies of this unit are buckets, which cut off the soil layer from below and on the side. At the same time, the bottom knife cuts off the ground layer from below, the right knife on the side, and the console knife partially cuts the top layer of soil from below for the next bucket. In particular, the analysis of interaction with the soil of the right knife of the continuous action unit is of theoretical and practical interest. To do this, the right knife is divided into elements and analyzed the interaction of these elements with the ground. The consistent impact on the soil of many right knives, within the width of the grip of the unit, is replaced by the impact on the ground of one conventional right knife at a distance necessary for the development of one cubic meter of soil. The forces of interaction of the conventional right knife with the ground are called conditional forces.The method of research. The method for calculating the energy costs during punching the right knife into the ground is shown: on separating the formation of the ground from its body, on overcoming the ground friction on the edge of the blade, on overcoming the ground pressure on the edge of the blade, on accelerating the ground of the blade by means of the axle, on overcoming the ground friction on the shelf, to overcome the ground friction against the outside surface.The total energy costs of interacting with a soil of one cubic meter are derived from the addition of private energy costs. The method of calculating the horizontal longitudinal force needed to move the right knife is given.Results. On the basis of the methodology developed, energy costs are calculated when introducing the right knife into the ground: on separating the soil from its body, on overcoming the friction of the ground on the edge of the blade, on overcoming the pressure of the ground on the face of the blade, on the acceleration of the ground with a fascia blade, on overcoming the ground friction on the face. The total energy costs of the right knife interact with the soil of one cubic meter. The horizontal long-lived force needed to move the right knife has been determined.Conclusion. As a result of the calculations: the energy needed to cut the ground with the right knives, more than 71 J/cube. The horizontal longitudinal force needed to move the right knife is 730 N. To determine the total energy spent on cutting the ground by buckets of the unit to remove the top layer of soil from the underlying layer of the road, it is necessary to analyze the interaction with the soil of other elements of the bucket.


2021 ◽  
Vol 2021 (2) ◽  
pp. 12-20
Author(s):  
O.Ye. Malyarenko ◽  
◽  
V.V. Stanytsina ◽  

The total energy intensity of goods, labour and services as an indicator of energy efficiency is introduced in DSTU 3682-98 "Methods of determination of total energy cost of goods, labour and services", but some of its components listed in the standard still do not have clear algorithms for determining them. The article provides an overview of changes and extensions to the methodology presented in the articles of scientists of the Institute of General Energy of the National Academy of Sciences of Ukraine, who develop this methodology for more than 20 years. Authors propose such extensions and advancements to the methodology: the calculation algorithm of direct and technological energy intensity of goods production was advanced by the use of proportions for each product for multi-productive technologies, new calculation algorithm is proposed to assess energy intensity of labour and technological assets, also a set of hazardous pollutions was accounted in the method of assessments of abatement technologies energy intensity. The proposed advanced methodology could be used both for existing single- and multi-products technologies retrofit planning and for the design of new technological facilities taking into account a wide range of production factors including impact on the environment. Keywords: energy intensity of products, technology, direct energy intensity, total energy intensity, distribution of common energy costs


Sign in / Sign up

Export Citation Format

Share Document