Extracellular Polysaccharides from Marine Microorganisms

2016 ◽  
pp. 153-178
Marine Drugs ◽  
2021 ◽  
Vol 19 (9) ◽  
pp. 522
Author(s):  
Patrícia Concórdio-Reis ◽  
Vítor D. Alves ◽  
Xavier Moppert ◽  
Jean Guézennec ◽  
Filomena Freitas ◽  
...  

Marine environments comprise almost three quarters of Earth’s surface, representing the largest ecosystem of our planet. The vast ecological and metabolic diversity found in marine microorganisms suggest that these marine resources have a huge potential as sources of novel commercially appealing biomolecules, such as exopolysaccharides (EPS). Six Alteromonas strains from different marine environments in French Polynesia atolls were selected for EPS extraction. All the EPS were heteropolysaccharides composed of different monomers, including neutral monosaccharides (glucose, galactose, and mannose, rhamnose and fucose), and uronic acids (glucuronic acid and galacturonic acid), which accounted for up to 45.5 mol% of the EPS compositions. Non-carbohydrate substituents, such as acetyl (0.5–2.1 wt%), pyruvyl (0.2–4.9 wt%), succinyl (1–1.8 wt%), and sulfate (1.98–3.43 wt%); and few peptides (1.72–6.77 wt%) were also detected. Thermal analysis demonstrated that the EPS had a degradation temperature above 260 °C, and high char yields (32–53%). Studies on EPS functional properties revealed that they produce viscous aqueous solutions with a shear thinning behavior and could form strong gels in two distinct ways: by the addition of Fe2+, or in the presence of Mg2+, Cu2+, or Ca2+ under alkaline conditions. Thus, these EPS could be versatile materials for different applications.


2020 ◽  
Author(s):  
Ian Sims ◽  
K Middleton ◽  
AG Lane ◽  
AJ Cairns ◽  
A Bacic

Microscopic examination of suspension-cultured cells of Phleum pratense L., Panicum miliaceum L., Phalaris aquatica L. and Oryza sativa L. showed that they were comprised of numerous root primordia. Polysaccharides secreted by these suspension cultures contained glycosyl linkages consistent with the presence of high proportions of root mucilage-like polysaccharides. In contrast, suspension-cultured cells of Hordeum vulgare L. contained mostly undifferentiated cells more typical of plant cells in suspension culture. The polysaccharides secreted by H. vulgare cultures contained mostly linkages consistent with the presence of glucuronoarabinoxylan. The soluble polymers secreted by cell-suspension cultures of Phleum pratense contained 70% carbohydrate, 14% protein and 6% inorganic material. The extracellular polysaccharides were separated into four fractions by anion-exchange chromatography using a gradient of imidazole-HCl at pH 7.0. From glycosyl-linkage analyses, five polysaccharides were identified: an arabinosylated xyloglucan (comprising 20% of the total polysaccharide), a glucomannan (6%), a type-II arabinogalactan (an arabinogalactan-protein; 7%), an acidic xylan (3%), and a root-slime-like polysaccharide, which contained features of type-II arabinogalactans and glucuronomannans (65%).


2020 ◽  
Author(s):  
Ian Sims ◽  
K Middleton ◽  
AG Lane ◽  
AJ Cairns ◽  
A Bacic

Microscopic examination of suspension-cultured cells of Phleum pratense L., Panicum miliaceum L., Phalaris aquatica L. and Oryza sativa L. showed that they were comprised of numerous root primordia. Polysaccharides secreted by these suspension cultures contained glycosyl linkages consistent with the presence of high proportions of root mucilage-like polysaccharides. In contrast, suspension-cultured cells of Hordeum vulgare L. contained mostly undifferentiated cells more typical of plant cells in suspension culture. The polysaccharides secreted by H. vulgare cultures contained mostly linkages consistent with the presence of glucuronoarabinoxylan. The soluble polymers secreted by cell-suspension cultures of Phleum pratense contained 70% carbohydrate, 14% protein and 6% inorganic material. The extracellular polysaccharides were separated into four fractions by anion-exchange chromatography using a gradient of imidazole-HCl at pH 7.0. From glycosyl-linkage analyses, five polysaccharides were identified: an arabinosylated xyloglucan (comprising 20% of the total polysaccharide), a glucomannan (6%), a type-II arabinogalactan (an arabinogalactan-protein; 7%), an acidic xylan (3%), and a root-slime-like polysaccharide, which contained features of type-II arabinogalactans and glucuronomannans (65%).


2020 ◽  
Author(s):  
Ian Sims ◽  
A Bacic

The soluble polymers secreted by cell-suspension cultures of Nicotiana plumbaginifolia contained 78% carbohydrate, 6% protein and 4% inorganic material. The extracellular polysaccharides were separated into three fractions by anion-exchange chromatography using a gradient of imidazole-HCl at pH 7 and the individual polysaccharides in each fraction were then isolated by selective precipitation and enzymic treatment. Monosaccharide and linkage compositions were determined for each polysaccharide after reduction of uronic acid residues and the degree of esterification of the various uronic acid residues in each polysaccharide was determined concurrently with the linkage types. Six components were identified: an arabinoxyloglucan (comprising 34% of the total polysaccharide) and a galactoglucomannan (15%) in the unbound neutral fraction, a type II arabinogalactan (an arabinogalactan-protein, 11%) and an acidic xylan (3%) in the first bound fraction, and an arabinoglucuronomannan (11%) and a galacturonan (26%) in the second bound fraction. © 1995.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 815
Author(s):  
Janja Trček ◽  
Iztok Dogsa ◽  
Tomaž Accetto ◽  
David Stopar

Bacteria produce a variety of multifunctional polysaccharides, including structural, intracellular, and extracellular polysaccharides. They are attractive for the industrial sector due to their natural origin, sustainability, biodegradability, low toxicity, stability, unique viscoelastic properties, stable cost, and supply. When incorporated into different matrices, they may control emulsification, stabilization, crystallization, water release, and encapsulation. Acetan is an important extracellular water-soluble polysaccharide produced mainly by bacterial species of the genera Komagataeibacter and Acetobacter. Since its original description in Komagataeibacter xylinus, acetan-like polysaccharides have also been described in other species of acetic acid bacteria. Our knowledge on chemical composition of different acetan-like polysaccharides, their viscoelasticity, and the genetic basis for their production has expanded during the last years. Here, we review data on acetan biosynthesis, its molecular structure, genetic organization, and mechanical properties. In addition, we have performed an extended bioinformatic analysis on acetan-like polysaccharide genetic clusters in the genomes of Komagataeibacter and Acetobacter species. The analysis revealed for the first time a second acetan-like polysaccharide genetic cluster, that is widespread in both genera. All species of the Komagataeibacter possess at least one acetan genetic cluster, while it is present in only one third of the Acetobacter species surveyed.


Sign in / Sign up

Export Citation Format

Share Document