Stress and strain-based approaches for fatigue life evaluation of complex structural details

2011 ◽  
pp. 277-287
Author(s):  
M Biot ◽  
L Moro
2012 ◽  
Vol 134 (3) ◽  
Author(s):  
Osamu Watanabe ◽  
Bopit Bubphachot ◽  
Akihiro Matsuda ◽  
Taisuke Akiyama

Plastic strain of structures having stress concentration is estimated by using the simplified method or the finite element elastic solutions. As the simplified methods used in codes and standards, we can cite Neuber’s formula in the work by American Society of Mechanical Engineers (1995, “Boiler and Pressure Vessel Code,” ASME-Code, Section 3, Division 1, Subsection NH) and by Neuber (1961, “Theory of Stress Concentration for Shear Strained Prismatic Bodies With Arbitrary Nonlinear Stress-Strain Law,” ASME, J. Appl. Mech., 28, pp.544–550) and elastic follow-up procedure in the work by Japan Society of Mechanical Engineers [2005, “Rules on Design and Construction for Nuclear Power Plants, 2005, Division 2: Fast Breeder Reactor” (in Japanese)]. Also, we will cite stress redistribution locus (SRL) method recently proposed as the other simplified method in the work by Shimakawa et al. [2002, “Creep-Fatigue Life Evaluation Based on Stress Redistribution Locus (SRL) Method,” JPVRC Symposium 2002, JPVRC/EPERC/JPVRC Joint Workshop sponsored by JPVRC, Tokyo, Japan, pp. 87–95] ad by High Pressure Institute of Japan [2005, “Creep-Fatigue Life Evaluation Scheme for Ferritic Component at Elevated Temperature,” HPIS C 107 TR 2005 (in Japanese)]. In the present paper, inelastic finite element analysis of perforated plate, whose stress concentration is about 2.2–2.5, is carried out, and stress and strain locus in inelastic range by the detailed finite element solutions is investigated to compare accuracy of the simplified methods. As strain-controlled loading conditions, monotonic loading, cyclic loading, and cyclic loading having hold time in tension under strain-controlled loading are assumed. The inelastic strain affects significantly life evaluation of fatigue and creep-fatigue failure modes, and the stress and strain locus is discussed from the detailed inelastic finite element solutions.


2019 ◽  
Vol 893 ◽  
pp. 1-5 ◽  
Author(s):  
Eui Soo Kim

Pressure vessels are subjected to repeated loads during use and charging, which can causefine physical damage even in the elastic region. If the load is repeated under stress conditions belowthe yield strength, internal damage accumulates. Fatigue life evaluation of the structure of thepressure vessel using finite element analysis (FEA) is used to evaluate the life cycle of the structuraldesign based on finite element method (FEM) technology. This technique is more advanced thanfatigue life prediction that uses relational equations. This study describes fatigue analysis to predictthe fatigue life of a pressure vessel using stress data obtained from FEA. The life prediction results areuseful for improving the component design at a very early development stage. The fatigue life of thepressure vessel is calculated for each node on the model, and cumulative damage theory is used tocalculate the fatigue life. Then, the fatigue life is calculated from this information using the FEanalysis software ADINA and the fatigue life calculation program WINLIFE.


Sign in / Sign up

Export Citation Format

Share Document