The soil contamination with cadmium after applications of sewage sludge

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4003
Author(s):  
Mirosław Wyszkowski ◽  
Jadwiga Wyszkowska ◽  
Agata Borowik ◽  
Natalia Kordala

The aim of the research was to determine the effect of soil contamination with diesel oil (0; 5; 10 and 15 cm3 kg−1 of soil) on the content of trace elements in the aboveground parts of oat (Avena sativa L.). Stabilised sewage sludge was used to mitigate the likely negative impact of diesel oil on the plant. Growing soil contamination with diesel oil had a significant impact on the content of trace elements in the aboveground biomass of oat. In the series without sewage sludge, the contents of the analysed elements, except for chromium, zinc, copper and cobalt, were positively correlated with the increasing doses of diesel oil. The largest increase in the content was recorded in the case of manganese. The sewage sludge used to reduce the influence of diesel oil on the chemical composition of oat had a positive effect on the content of the analysed trace elements. Compared to the series without the addition of a stabilised sewage sludge, it contributed to a reduction in the average content of chromium, nickel, copper, manganese and cobalt in the aboveground parts of oat plants. No significant effect of the applied remediation treatment was noted for cadmium, and the results were equivocal for iron.


2006 ◽  
Vol 25 (S1) ◽  
pp. 194-195
Author(s):  
Péter Sipos ◽  
Tibor Németh ◽  
Viktória Kovács Kis ◽  
Ilona Mohai

2020 ◽  
Vol 12 (16) ◽  
pp. 6517 ◽  
Author(s):  
Jolanta Latosińska ◽  
Przemysław Czapik

Popular incineration of sewage sludge results in the increase in heavy metals content in ash. The knowledge of the total content of heavy metals in sewage sludge ash does not demonstrate a potential hazard. The toxicity of heavy metals in great measure depends on the form of their occurrence. The prevailing norms do not require the ecological risk assessment of the environmental burden with heavy metals for the choice of the method of the utilization of sewage sludge ash. The paper presents the research results on the mobility of heavy metals in sewage sludge ash after its incineration. The geo-accumulation index (IGAI), the potential ecological risk index (PERI) and the risk assessment code (RAC) were used for the evaluation of the potential soil contamination with heavy metals. The authors also suggested a new formula, which took into consideration more factors influencing the risk of the contamination of a water-soil environment with heavy metals—the water and soil environment risk index (WSERI). The calculated indices for sewage sludge ash indicate the risk of soil contamination with heavy metals.


2020 ◽  
Vol 76 (4) ◽  
pp. 87-96
Author(s):  
Zahra Zerrouqi ◽  
Mohammed Reda Tazi ◽  
Abdelhafid Chafi ◽  
Abdessamad Zerrouqi

Activated sludge treatment plants generate large quantities of sludge each year, thereby posing a serious environmental problem. This study aims to experimentally assess the effect of rainwater on the leaching of sludge components. In this context, a percolation test was set up, and composed of PVC cylinders into which the solid substrate was introduced. Five modalities of the solid substrate were used: a sludge modality, a soil modality and three modalities with increasing percentage of sludge (1%, 5% and 25%) in the soil. The percolation water is collected during the rainy months in bottles placed below each column. Solid substrate samples were taken before the test and after one year. The physicochemical analysis of the percolation water showed an increase in the electrical conductivity, BOD5, COD, nitrogen compounds and phosphate compounds which were proportional to the percentage of sludge. The pH of the sewage sludge leachates varies from 7.61 to 7.98. Zinc and copper were the most mobilized metals. A year following the installation of the percolation test, electrical conductivity, total phosphorus (TP) and orthophosphate (PO4) contents decreased for the solid substrates using the five modalities. Furthermore, ammonium (NH4) and nitrates (NO3) levels decreased in soil mixed with 1 to 25% of sludge due to their leaching by rainwater. Collectively, these data show that the leachates through the soil mixed with sludge are stable and loaded with NO3, a plant nutrient that can contaminate the groundwater as well as the surface waters inducing their eutrophication. Furthermore, addition of sludge to the soil improves the levels of carbon, total nitrogen, TP and PO4 in the soil and thereby soil fertility. The addition of sludge, however, is not without soil contamination with heavy metals. Such soil contamination would cause pollution of surface and ground water. Reaching certain severity, it should call for the adoption of prompt measures for the protection of environment and human health.


2020 ◽  
Vol 231 (11) ◽  
Author(s):  
Mirosław Wyszkowski ◽  
Jadwiga Wyszkowska ◽  
Agata Borowik ◽  
Natalia Kordala

AbstractThe aim of the study was to determine the effect of soil contamination with diesel oil (0, 5, 10 and 15 mL/kg d.m. of soil) on the macroelement content (nitrogen, phosphorus, potassium, sodium, magnesium and calcium) in the above-ground parts of oats (Avena sativa L.). A remediation effect of sludge as a substance which reduces the negative impact of this petroleum product on its element content in oats was also evaluated. Sewage sludge was applied in doses 0, 4, 8 and 12 g/kg of soil. The macroelement content in the above-ground parts of oats depended on the soil contamination with diesel oil and on the addition of sewage sludge to the soil. Soil contamination with diesel oil caused significant changes in the content of all macroelements in the above-ground biomass of oats. Increasing doses of the petroleum product in the series without sewage sludge decreased the content of all macroelements, except phosphorus and calcium. The highest effect was observed for the content of sodium in oats. The addition of sewage sludge to the soil alleviated the negative impact of diesel oil on the chemical composition of the plants. The application of sewage sludge to soil resulted in an increase in average content of nitrogen, sodium and magnesium (as opposed to phosphorus and partly calcium) in the above-ground parts of oats, compared to the series without sewage sludge.


Sign in / Sign up

Export Citation Format

Share Document