Noradrenergic System in Depression

Author(s):  
J Meana ◽  
Luis Callado ◽  
Jesús García-Sevilla
Keyword(s):  
2002 ◽  
Vol 87 (4) ◽  
pp. 1938-1947 ◽  
Author(s):  
Yu-Zhen Pan ◽  
De-Pei Li ◽  
Hui-Lin Pan

Activation of spinal α2-adrenergic receptors by the descending noradrenergic system and α2-adrenergic agonists produces analgesia. However, the sites and mechanisms of the analgesic action of spinally administered α2-adrenergic receptor agonists such as clonidine are not fully known. The dorsal horn neurons in the outer zone of lamina II (lamina IIo) are important for processing nociceptive information from C-fiber primary afferents. In the present study, we tested a hypothesis that activation of presynaptic α2-adrenergic receptors by clonidine inhibits the excitatory synaptic input to lamina IIo neurons. Whole cell voltage-clamp recordings were performed on visualized lamina IIo neurons in the spinal cord slice of rats. The miniature excitatory postsynaptic currents (mEPSCs) were recorded in the presence of tetrodotoxin, bicuculline, and strychnine. The evoked EPSCs were obtained by electrical stimulation of the dorsal root entry zone or the attached dorsal root. Both mEPSCs and evoked EPSCs were abolished by application of 6-cyano-7-nitroquinoxaline-2,3-dione. Clonidine (10 μM) significantly decreased the frequency of mEPSCs from 5.8 ± 0.9 to 2.7 ± 0.6 Hz (means ± SE) without altering the amplitude and the decay time constant of mEPSCs in 25 of 27 lamina IIo neurons. Yohimbine (2 μM, an α2-adrenergic receptor antagonist), but not prazosin (2 μM, an α1-adrenergic receptor antagonist), blocked the inhibitory effect of clonidine on the mEPSCs. Clonidine (1–20 μM, n = 8) also significantly attenuated the peak amplitude of evoked EPSCs in a concentration-dependent manner. The effect of clonidine on evoked EPSCs was abolished in the presence of yohimbine ( n = 5). These data suggest that clonidine inhibits the excitatory synaptic input to lamina IIo neurons through activation of α2-adrenergic receptors located on the glutamatergic afferent terminals. Presynaptic inhibition of glutamate release from primary afferents onto lamina IIoneurons likely plays an important role in the analgesic action produced by activation of the descending noradrenergic system and α2-adrenergic agonists.


1993 ◽  
Vol 24 (5) ◽  
pp. 1069-1078 ◽  
Author(s):  
Erna B.H.W. Erdtsieck-Ernste ◽  
Matthijs G.P. Feenstra ◽  
Gerard J. Boer

Author(s):  
Soichiro Tsutsumi ◽  
Takuya Watanabe ◽  
Akinobu Hatae ◽  
Marika Hirata ◽  
Hiroya Omori ◽  
...  

2018 ◽  
Vol 87 (2) ◽  
Author(s):  
Isra Alsaady ◽  
Ellen Tedford ◽  
Mohammad Alsaad ◽  
Greg Bristow ◽  
Shivali Kohli ◽  
...  

ABSTRACT Toxoplasma gondii is associated with physiological effects in the host. Dysregulation of catecholamines in the central nervous system has previously been observed in chronically infected animals. In the study described here, the noradrenergic system was found to be suppressed with decreased levels of norepinephrine (NE) in brains of infected animals and in infected human and rat neural cells in vitro. The mechanism responsible for the NE suppression was found to be downregulation of dopamine β-hydroxylase (DBH) gene expression, encoding the enzyme that synthesizes norepinephrine from dopamine, with downregulation observed in vitro and in infected brain tissue, particularly in the dorsal locus coeruleus/pons region. The downregulation was sex specific, with males expressing reduced DBH mRNA levels whereas females were unchanged. Rather, DBH expression correlated with estrogen receptor in the female rat brains for this estrogen-regulated gene. DBH silencing was not a general response of neurons to infection, as human cytomegalovirus did not downregulate DBH expression. The noradrenergic-linked behaviors of sociability and arousal were altered in chronically infected animals, with a high correlation between DBH expression and infection intensity. A decrease in DBH expression in noradrenergic neurons can elevate dopamine levels, which provides a possible explanation for mixed observations of changes in this neurotransmitter with infection. Decreased NE is consistent with the loss of coordination and motor impairments associated with toxoplasmosis. Further, the altered norepinephrine synthesis observed here may, in part, explain behavioral effects of infection and associations with mental illness.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2536
Author(s):  
Kristen Stout ◽  
Marketa Bernaskova ◽  
Gary Miller ◽  
Antje Hufner ◽  
Wolfgang Schuehly

In traditional Asian medicinal systems, preparations of the root and stem bark of Magnolia species are widely used to treat anxiety and other nervous disturbances. The biphenyl-type neolignans honokiol and magnolol are the main constituents of Magnolia bark extracts. In the central nervous system, Magnolia bark preparations that contain honokiol are thought to primarily interact with γ-aminobutyric acid A (GABAA) receptors. However, stress responses inherently involve the noradrenergic system, which has not been investigated in the pharmacological mechanism of honokiol. We present here interactions of honokiol and other synthesized biphenyl-type neolignans and diphenylmethane analogs with the norepinephrine transporter (NET), which is responsible for the synaptic clearance of norepinephrine and the target of many anxiolytics. Of the synthesized compounds, 16 are new chemical entities, which are fully characterized. The 52 compounds tested show mild, non-potent interactions with NET (IC50 > 100 µM). It is thus likely that the observed anxiolytic effects of, e.g., Magnolia preparations, are not due to direct interaction with the noradrenergic system.


Sign in / Sign up

Export Citation Format

Share Document