Temporal Redistribution of Plantar Pressure Points in the Healthy and Diabetics

Author(s):  
D Oberoi ◽  
C Pradhan ◽  
C Kumar ◽  
S D’Souza
Keyword(s):  
Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2246
Author(s):  
Scott Pardoel ◽  
Gaurav Shalin ◽  
Julie Nantel ◽  
Edward D. Lemaire ◽  
Jonathan Kofman

Freezing of gait (FOG) is a sudden and highly disruptive gait dysfunction that appears in mid to late-stage Parkinson’s disease (PD) and can lead to falling and injury. A system that predicts freezing before it occurs or detects freezing immediately after onset would generate an opportunity for FOG prevention or mitigation and thus enhance safe mobility and quality of life. This research used accelerometer, gyroscope, and plantar pressure sensors to extract 861 features from walking data collected from 11 people with FOG. Minimum-redundancy maximum-relevance and Relief-F feature selection were performed prior to training boosted ensembles of decision trees. The binary classification models identified Total-FOG or No FOG states, wherein the Total-FOG class included data windows from 2 s before the FOG onset until the end of the FOG episode. Three feature sets were compared: plantar pressure, inertial measurement unit (IMU), and both plantar pressure and IMU features. The plantar-pressure-only model had the greatest sensitivity and the IMU-only model had the greatest specificity. The best overall model used the combination of plantar pressure and IMU features, achieving 76.4% sensitivity and 86.2% specificity. Next, the Total-FOG class components were evaluated individually (i.e., Pre-FOG windows, Freeze windows, transition windows between Pre-FOG and Freeze). The best model detected windows that contained both Pre-FOG and FOG data with 85.2% sensitivity, which is equivalent to detecting FOG less than 1 s after the freeze began. Windows of FOG data were detected with 93.4% sensitivity. The IMU and plantar pressure feature-based model slightly outperformed models that used data from a single sensor type. The model achieved early detection by identifying the transition from Pre-FOG to FOG while maintaining excellent FOG detection performance (93.4% sensitivity). Therefore, if used as part of an intelligent, real-time FOG identification and cueing system, even if the Pre-FOG state were missed, the model would perform well as a freeze detection and cueing system that could improve the mobility and independence of people with PD during their daily activities.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1450
Author(s):  
Alfredo Ciniglio ◽  
Annamaria Guiotto ◽  
Fabiola Spolaor ◽  
Zimi Sawacha

The quantification of plantar pressure distribution is widely done in the diagnosis of lower limbs deformities, gait analysis, footwear design, and sport applications. To date, a number of pressure insole layouts have been proposed, with different configurations according to their applications. The goal of this study is to assess the validity of a 16-sensors (1.5 × 1.5 cm) pressure insole to detect plantar pressure distribution during different tasks in the clinic and sport domains. The data of 39 healthy adults, acquired with a Pedar-X® system (Novel GmbH, Munich, Germany) during walking, weight lifting, and drop landing, were used to simulate the insole. The sensors were distributed by considering the location of the peak pressure on all trials: 4 on the hindfoot, 3 on the midfoot, and 9 on the forefoot. The following variables were computed with both systems and compared by estimating the Root Mean Square Error (RMSE): Peak/Mean Pressure, Ground Reaction Force (GRF), Center of Pressure (COP), the distance between COP and the origin, the Contact Area. The lowest (0.61%) and highest (82.4%) RMSE values were detected during gait on the medial-lateral COP and the GRF, respectively. This approach could be used for testing different layouts on various applications prior to production.


Author(s):  
Liliana Cațan ◽  
Simona Cerbu ◽  
Elena Amaricai ◽  
Oana Suciu ◽  
Delia Ioana Horhat ◽  
...  

(1) Background: Adolescent idiopathic scoliosis (AIS) can be associated with vitamin D deficiency and osteopenia. Plantar pressure and stabilometry offer important information about posture. The objectives of our study were to compare static plantar pressure and stabilometric parameters, serum 25-OH-vitamin D3 and calcium levels, and bone mineral densitometry expressed as z-score in patients with moderate AIS and healthy subjects. (2) Methods: 32 female adolescents (idiopathic S shaped moderate scoliosis, main lumbar curve) and 32 gender and age-matched controls performed: static plantar pressure, stabilometry, serum 25-OH-vitamin D3 and calcium levels, and dual X-ray absorptiometry scans of the spine. (3) Results: In scoliosis patients, significant differences were recorded between right and left foot for total foot, first and fifth metatarsal, and heel loadings. Stabilometry showed a poorer postural control when compared to healthy subjects (p < 0.001). Patients had significantly lower vitamin D, calcium levels, and z-scores. Lumbar Cobb angle was significantly correlated with the z-score (r = −0.39, p = 0.02), with right foot fifth metatarsal load (r = −0.35, p = 0.04), center of pressure CoPx (r = −0.42, p = 0.01), CoP displacement (r = 0.35, p = 0.04) and 90% confidence ellipse area (r = −0.38, p = 0.03). (4) Conclusions: In our study including female adolescents with idiopathic S shaped moderate scoliosis, plantar pressure and stabilometric parameters were influenced by the main scoliotic curve.


Sign in / Sign up

Export Citation Format

Share Document