Upland Erosion Research on Rangeland

Overland Flow ◽  
1992 ◽  
pp. 336-374
Keyword(s):  
2010 ◽  
Vol 14 (11) ◽  
pp. 2207-2217 ◽  
Author(s):  
T. Y. Tebebu ◽  
A. Z. Abiy ◽  
A. D. Zegeye ◽  
H. E. Dahlke ◽  
Z. M. Easton ◽  
...  

Abstract. Gully formation in the Ethiopian Highlands has been identified as a major source of sediment in water bodies, and results in sever land degradation. Loss of soil from gully erosion reduces agricultural productivity and grazing land availability, and is one of the major causes of reservoir siltation in the Nile Basin. This study was conducted in the 523 ha Debre-Mawi watershed south of Bahir Dar, Ethiopia, where gullies are actively forming in the landscape. Historic gully development in a section of the Debre-Mawi watershed was estimated with semi structured farmer interviews, remotely sensed imagery, and measurements of current gully volumes. Gully formation was assessed by instrumenting the gully and surrounding area to measure water table levels and soil physical properties. Gully formation began in the late 1980's following the removal of indigenous vegetation, leading to an increase in surface and subsurface runoff from the hillsides. A comparison of the gully area, estimated from a 0.58 m resolution QuickBird image, with the current gully area mapped with a GPS, indicated that the total eroded area of the gully increased from 0.65 ha in 2005 to 1.0 ha in 2007 and 1.43 ha in 2008. The gully erosion rate, calculated from cross-sectional transect measurements, between 2007 and 2008 was 530 t ha−1 yr−1 in the 17.4 ha area contributing to the gully, equivalent to over 4 cm soil loss over the contributing area. As a comparison, we also measured rill and interrill erosion rates in a nearby section of the watershed, gully erosion rates were approximately 20 times the measured rill and interrill rates. Depths to the water table measured with piezometers showed that in the actively eroding sections of the gully the water table was above the gully bottom and, in stable gully sections the water table was below the gully bottom during the rainy season. The elevated water table appears to facilitate the slumping of gully walls, which causes the gully to widen and to migrate up the hillside.


1987 ◽  
Vol 1 (2) ◽  
pp. 127-134 ◽  
Author(s):  
P. Y. Julien ◽  
A. M. Dawod

2010 ◽  
Vol 7 (4) ◽  
pp. 5235-5265 ◽  
Author(s):  
T. Y. Tebebu ◽  
A. Z. Abiy ◽  
H. E. Dahlke ◽  
Z. M. Easton ◽  
A. D. Zegeye ◽  
...  

Abstract. Gully formation in the Ethiopian Highlands has been identified as a major source of sediment in water bodies, and results in sever land degradation. Loss of soil from gully erosion lowers crop yields, reduces grazing land availability, and is one of the major causes of reservoir siltation in the Nile Basin. This study was conducted in the 523 ha of Debre-Mawi watershed south of Bahir Dar, Ethiopia, where gullies are actively forming in the landscape. Historic gully development in a section of the Debre-Mawi watershed was estimated with semi structured farmer interviews, remotely sensed imagery, and estimates of current gully volumes. Gully formation was assessed by instrumenting the gully and surrounding area to measure water table levels and soil physical properties. Gully formation began in the 1980's following the removal of indigenous vegetation, leading to an increase in surface and subsurface runoff from the hillsides. A comparison of the gully area, estimated from a 0.58 m resolution quick bird image, with the current gully area mapped with a GPS, indicated that the total eroded area of the gully increased from 0.65 ha in 2005 to 1.0 ha in 2007 and 1.43 ha in 2008. The gully erosion rate between 2007 and 2008 was 530 t ha-1yr-1 in the 17.4 ha area contributing to the gully, equivalent to over 4 cm soil loss over the contributing area. As a comparison, we also measured rill and inter-rill erosion rates in a nearby section of the watershed, gully erosion rates were approximately 20 times the measured rill and inter rill rates. Depths to the water table measured with piezometers showed that in the actively eroding sections of the gully the water table was above the gully bottom and, in stable gully sections the water table was below the gully bottom during the rainy season. The elevated water table facilitates the slumping of gully walls, which causes widening and up-migration on the hillside.


1987 ◽  
Vol 1 (2) ◽  
pp. 135-140
Author(s):  
A. M. Dawod ◽  
P. Y. Julien

2017 ◽  
Vol 49 (5) ◽  
pp. 1349-1362 ◽  
Author(s):  
Shahla Yavari ◽  
Saman Maroufpoor ◽  
Jalal Shiri

Abstract Soil is one of the main elements of natural resources. Accurate estimation of soil erosion is very important in optimum soil resources development and management. Analyzing soil erosion by water on cultivated lands is an important task due to the numerous problems caused by erosion. In this study, the performance of three different data-driven approaches, e.g. multilayer perceptron artificial neural network (ANN), grid partitioning (GP), and subtractive neuro-fuzzy (NF) models were evaluated for estimating soil erosion. Land use, slope, soil and upland erosion amount were used as input parameters of the applied models and the erosion values obtained by MPSIAC method were considered as the benchmark for evaluating the ANN and NF models. The applied models were assessed using the coefficient of determination (R2), the root mean square error (RMSE), the BIAS, and the variance accounted for (VAF) indices. The results showed that the subtractive NF model presented the most accurate results with the minimum RMSE value (3.775) and GP, NF and ANN models were ranked successively.


2001 ◽  
Vol 55 (2) ◽  
pp. 235-245 ◽  
Author(s):  
Erik M. Clapp ◽  
Paul R. Bierman ◽  
Kyle K. Nichols ◽  
Milan Pavich ◽  
Marc Caffee

AbstractUsing 10Be and 26Al measured in sediment and bedrock, we quantify rates of upland erosion and sediment supply to a small basin in northwestern New Mexico. This and many other similar basins in the southwestern United States have been affected by cycles of arroyo incision and backfilling several times in the past few millennia. The sediment generation (275 ± 65 g m−2 yr−1) and bedrock equivalent lowering rates (102 ± 24 m myr−1) we determine are sufficient to support at least three arroyo cycles in the past 3,000 years, consistent with rates calculated from a physical sediment budget within the basin and regional rates determined using other techniques. Nuclide concentrations measured in different sediment sources and reservoirs suggest that the arroyo is a good spatial and temporal integrator of sediment and associated nuclide concentrations from throughout the basin, that the basin is in steady-state, and that nuclide concentration is independent of sediment grain size. Differences between nuclide concentrations measured in sediment sources and reservoirs reflect sediment residence times and indicate that subcolluvial bedrock weathering on hillslopes supplies more sediment to the basin than erosion of exposed bedrock.


Author(s):  
O. Almasalmeh ◽  
Ahmed Adel Saleh ◽  
Khaldoon A. Mourad

AbstractModelling soil erosion and sediment transport are vital to assess the impact of the flash floods. However, limited research works have studied sediment transport, especially in Egypt. This paper employs the HEC-HMS lumped hydrological model to predict the sediment load due to the flood event of 9th March 2014 in Wadi Billi, Egypt. The Modified USLE model has been used to calculate the total upland erosion, while Laursen-Copeland has been used to simulate load streams’ sediment transport potential. The Normalized Difference Vegetation Index (NDVI) has been applied over Landsat 8 image captured on 20th February 2014 using ArcMap 10.5 to determine the vegetation cover based on its spectral footprint. The resulted sedigraph showed accumulation of more than five thousand tons of sediments at the Wadi’s outlet. The results are crucial to design a suitable stormwater management system to protect the downstream urban area and to use flood water for groundwater recharge.


2001 ◽  
Vol 54 (4) ◽  
pp. 356 ◽  
Author(s):  
S. J. Linse ◽  
D. E. Mergen ◽  
J. L. Smith ◽  
M. J. Trlica
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document