Seed Germination of Arboreal–Shrub Species with Different Dispersal Mechanisms in a Brazilian Tropical Dry Forest

2013 ◽  
pp. 299-318 ◽  
2010 ◽  
Vol 26 (6) ◽  
pp. 571-581 ◽  
Author(s):  
Susana Valencia-Díaz ◽  
Alejandro Flores-Palacios ◽  
Verónica Rodríguez-López ◽  
Elsa Ventura-Zapata ◽  
Antonio R. Jiménez-Aparicio

Abstract:Tree species are potential hosts for epiphytes; however in some forests epiphytes have a biased distribution among hosts. In a tropical dry forest of Mexico, previous research showed that there are trees with few epiphytes. It is possible that the bark of these hosts contain allelochemicals that influence epiphyte seed germination. The aims of this study were (1) to determine whether hosts with low epiphyte abundance (Ipomoea murucoides, I. pauciflora and Lysiloma acapulcense) would inhibit seed germination of Tillandsia recurvata through aqueous and organic bark extracts, (2) to determine whether germination of T. recurvata would differ among the hosts with low epiphyte abundance and a host with high epiphyte abundance (Bursera copallifera) and (3) to relate the chemical composition of organic bark extracts with inhibition of T. recurvata seed germination. Hexanic and dichloromethanic extracts were partially chemically characterized. Total phenolics and flavonoids concentrations of methanolic extracts were analysed. Aqueous and organic bark extracts from hosts with few epiphytes inhibited T. recurvata seed germination. Aqueous and dichloromethanic extracts of B. copallifera inhibited slightly the germination of T. recurvata. There was a positive correlation between concentration of flavonoids and inhibition of seed germination. Results suggest that a combination of compounds may be responsible for affecting the germination of T. recurvata. This study demonstrates the chemical effect of aqueous and organic bark extracts from hosts on germination of an epiphytic bromeliad.


2014 ◽  
Vol 92 (2) ◽  
pp. 281 ◽  
Author(s):  
Martha Cervantes ◽  
Eliane Ceccon ◽  
Consuelo Bonfil

<p><span style="font-size: medium;"><span style="font-family: Times New Roman;">Studies on propagation of trees of Tropical Dry Forests are scarce in Mexico, besides, the provenance of seeds used in reforestation programs is generally unknown or poorly addressed. Knowledge on seed germination patterns of different provenances, and how they change through time, is useful to identify adequate sources of seeds and to develop seed collection and storage programs under the low-tech conditions prevailing in most rural nurseries. We evaluated seed size variation and germination of stored seeds from three different provenances per species in <em>Acacia bilimekii</em>, <em>Haematoxylum brasiletto</em>, <em>Lysiloma acapulcense</em>, and<em> L. divaricatum</em>.<em> </em>Seeds were collected in four sites in the Tropical Dry Forest of Morelos, Mexico, and were stored at room temperature; seed size was estimated through the volume of 75 seeds per provenance/species. Seed germination tests were made periodically from six to 24 months after storage and the effects of provenance and storage time on germination were analyzed using Anovas. There were significant differences in seed size among provenances in all species, while the effect of provenance on germination rate was significant in three of them. Germination rate changed with storage time among species and provenances. After 24 months, germination capacity was still ≥ 50% in all provenances of the two <em>Lysiloma</em> species, but in <em>A.</em> <em>bilimekii</em> there were large differences among provenances. Mean germination capacity was low in <em>H. brasiletto</em> after six months. More research on seed germination and storage of a larger set of species and provenances is needed to restore the Mexican tropical dry forests. </span></span></p>


2018 ◽  
Vol 66 (2) ◽  
pp. 918
Author(s):  
Jhon Alexander Vargas-Figueroa ◽  
Alba Marina Torres-González

Seed germination and seed longevity under different environmental conditions are fundamental to understand the ecological dynamics of a species, since they are decisive for its success within the ecosystem. Taking this into account, seed germination and seed storage behavior of a pioneer species of tropical dry forest (Tecoma stans) were studied in the laboratory, to establish the effect of different environmental conditions on a local tree population. Two seed lots collected in July 2011, from Cali (Colombia), were evaluated under three alternating temperatures (20/30, 20/25, 25/30 ºC; 16/8 h) and four light qualities (12-hour white light photoperiod, darkness, and 15 minutes of red light -R and far red light -FR). Final germination was recorded for all treatments; for white light treatment the daily germination was recorded to calculate mean germination rate, mean germination time, and two synchronization indices. To assess the effect of light quality on physiological variables, a destructive germination test was carried out. For this test, another seed lot was evaluated under the same light conditions using an alternating temperature of 20/30 °C - 16/8 h, recording germination during six days for every treatment. In addition, seeds were stored at two different moisture contents (7.7, 4.1 %) and three storage temperatures (20, 5, -20 ºC), during two time periods (one and three months); a seed germination test was conducted for each treatment. Four replicates of 35 seeds per treatment were used for all experiments. Germination was high (GP > 90 %) with all alternating temperatures under white light, whereas under R, FR, and darkness germination was evenly successful at low temperatures, but at higher temperature, half of the seeds entered into secondary dormancy (GP= 45-65 %). However, mean germination rate and synchronization under R and FR decreased significantly in comparison to white light treatment and, consequently, mean germination time increased. Seed storage behavior of this species is orthodox due to the high germination (GP > 90 %) obtained under all treatments. In conclusion, T. stans seeds have a negative germination response at high incubation temperatures in the absence of white light, entering into a secondary dormancy. In contrast, an environment with a lower temperature and without white light delays the germination, but at the end seeds are able to reach the same germination values. This seed dependence on incident light in limiting conditions suggests a physiological mechanism on the seed tissues of this species, probably mediated by phytochromes. Finally, the orthodox seed storage behavior of T. stans is a reason to include this species in ex situ seed conservation programs for restoration and recovery of the tropical dry forest; however, long-term studies should be conducted in order to evaluate the maintenance of this characteristic throughout longer periods of time. Rev. Biol. Trop. 66(2): 918-936. Epub 2018 June 01. 


2001 ◽  
Vol 28 (1) ◽  
pp. 39-52 ◽  
Author(s):  
Ekta Khurana ◽  
J.S. Singh

Dry forests are among the most threatened ecosystems and have been extensively converted into grasslands, secondary forest, savanna or agricultural land. Knowledge of seed germination and seedling establishment is required for the success of efforts on restoration of these forests. This review focuses on the ecological requirements at seed and seedling stages, and collates the current knowledge of seed viability, dormancy, germination pattern and seedling behaviour of dry tropical tree species. The spatio-temporal variations within the tropical dry forest biome in soil moisture, light, temperature, nutrients and intensity of predation, significantly affect the seed and seedling traits of component species. The majority of dry tropical species possess orthodox seeds which are characterized by dormancy, while a few have recalcitrant seeds which possess little or no dormancy. Seed coat dormancy, which can be overcome by mechanical or acid scarification or sometimes by transit through animal guts, is most prevalent in the dry tropical forest species. Persistent species dominating the undisturbed portions of the forest have bigger seeds compared to those that mostly occur in disturbed regions and require shade for the survival of their seedlings. Shade demand is associated with drought endurance, and may be absolute in species such as Guettarda parviflora and Coccoloba microstachya, or facultative as in Plumeria alba and Bursera simaruba. The fluctuation in temperature significantly affects seed germination in several species of dry Afromontane forest trees of Ethiopia. Seedling mortality is primarily a function of moisture stress during the dry period. Adaptive responses of seedlings to drought stress include increased chlorophyll content, for example in Acacia catechu, and root biomass, as in several dry forest species (for example Drypetes parvifolia, Teclia verdoornia) of Ghana. Mulching, application of fertilizers, interplanting of leguminous species and mycorrhizal inoculation are useful tools for promoting seedling establishment in nutrient-poor dry tropical soils. Periodic forest fires, and predation affect recruitment and seedling development according to their intensity. Many species experiencing frequent fires have evolved thick seed coats, produce fire-hardy seedlings, or escape the effect by temporal separation of seed dispersal and fire events. Predation may result in abortion of fruits or may enhance germination and recruitment by scarification and dispersal, as in most species of the Guanacaste dry forest. Exposure to elevated CO2 has increased relative growth rate, total leaf area and water use efficiency in most of the dry tropical seedlings tested, but the magnitude of the effect has varied markedly among species. Due to the availability of a large source of energy, large seeds show higher germination percentage, greater seedling survival and increased growth. Seeds originating from different provenances exhibit differences in germination and seedling growth (for example Prosopis cineraria, Albizia lebbeck, Eucalyptus camaldulensis and Acacia mangium), efficiency of nodulation (for example Acacia nilotica, A. auriculiformis), and stress resistance (for example Populus deltoides, Dalbergia sissoo). The review points out the need for coordinated, long-term, field-based studies for identification of multiple cues and niches for germination, on seed and seedling dynamics in response to fire, and on within-species genetic variability for selection of suitable provenances. Field-based studies at species and community levels are also needed to permit manipulations of biotic components to augment the recruitment of desired species and to suppress that of undesirable species.


2021 ◽  
Vol 125 ◽  
pp. 107451
Author(s):  
Isabela Botelho Cardoso ◽  
Marina do Vale Beirão ◽  
Pablo Cuevas-Reyes ◽  
Yurixhi Maldonado-López ◽  
Joan Sebastian Aguilar-Peralta ◽  
...  

2021 ◽  
Vol 43 ◽  
Author(s):  
Joana Paula Bispo Nascimento ◽  
Bárbara França Dantas ◽  
Marcos Vinicius Meiado

Abstract: This study evaluates the effects of hydration and dehydration cycles (HD cycles) on seed germination of four Caatinga tree species (Anadenanthera colubrina var. cebil, Enterolobium contortisiliquum, Pityrocarpa moniliformis and Pterogyne nitens) subjected to different temperatures and determine the thermal upper and lower limits of germination. For this, seeds were subjected to 0, 1, 2 and 3 HD cycles and set to germinate at temperatures of 5, 10, 15, 25, 35, 40 and 45 °C. Germinability and t50 were calculated and the differences of these parameters were compared by two-way ANOVA. In addition, germination rate (GR = 1/t50), as well as ceiling (Tc), optimum (To) and base (Tb) temperatures were calculated to estimate the limits below or above which the seeds fail to germinate. We observed that the more HD cycles, the better the seed responds, especially at extreme temperatures. Seeds of all studied species showed To between 25 and 35 °C, Tb < 10 °C, and Tc > 40 °C. The slope of regression curves for germination rate showed that submitting seeds to HD cycles expands its thermal tolerance range, revealing that this seed pre-treatment can be efficient for species as it increases their tolerance to thermal stress.


Mycotaxon ◽  
2018 ◽  
Vol 133 (3) ◽  
pp. 499-512 ◽  
Author(s):  
Magdalena Contreras-Pacheco ◽  
Ricardo Valenzuela ◽  
Tania Raymundo ◽  
Leticia Pacheco

2021 ◽  
Vol 490 ◽  
pp. 119127
Author(s):  
Tobias Fremout ◽  
Evert Thomas ◽  
Kelly Tatiana Bocanegra-González ◽  
Carolina Adriana Aguirre-Morales ◽  
Anjuly Tatiana Morillo-Paz ◽  
...  

2016 ◽  
Vol 77 (3) ◽  
pp. 542-552 ◽  
Author(s):  
J. Mertens ◽  
J. Germer ◽  
J. A. Siqueira Filho ◽  
J. Sauerborn

Abstract Spondias tuberosa Arr., a fructiferous tree endemic to the northeast Brazilian tropical dry forest called Caatinga, accounts for numerous benefits for its ecosystem as well as for the dwellers of the Caatinga. The tree serves as feed for pollinators and dispersers as well as fodder for domestic ruminants, and is a source of additional income for local smallholders and their families. Despite its vantages, it is facing several man-made and natural threats, and it is suspected that S. tuberosa could become extinct. Literature review suggests that S. tuberosa suffers a reduced regeneration leading to population decrease. At this juncture S. tuberosa cannot be considered threatened according to the International Union for Conservation of Nature Red List Categories and Criteria, as it has not yet been assessed and hampered generative regeneration is not considered in the IUCN assessment. The combination of threats, however, may have already caused an extinction debt for S. tuberosa. Due to the observed decline in tree density, a thorough assessment of the S. tuberosa population is recommended, as well as a threat assessment throughout the entire Caatinga.


Sign in / Sign up

Export Citation Format

Share Document