scholarly journals GERMINATION OF STORED SEEDS OF FOUR TREE SPECIES FROM THE TROPICAL DRY FOREST OF MORELOS, MEXICO

2014 ◽  
Vol 92 (2) ◽  
pp. 281 ◽  
Author(s):  
Martha Cervantes ◽  
Eliane Ceccon ◽  
Consuelo Bonfil

<p><span style="font-size: medium;"><span style="font-family: Times New Roman;">Studies on propagation of trees of Tropical Dry Forests are scarce in Mexico, besides, the provenance of seeds used in reforestation programs is generally unknown or poorly addressed. Knowledge on seed germination patterns of different provenances, and how they change through time, is useful to identify adequate sources of seeds and to develop seed collection and storage programs under the low-tech conditions prevailing in most rural nurseries. We evaluated seed size variation and germination of stored seeds from three different provenances per species in <em>Acacia bilimekii</em>, <em>Haematoxylum brasiletto</em>, <em>Lysiloma acapulcense</em>, and<em> L. divaricatum</em>.<em> </em>Seeds were collected in four sites in the Tropical Dry Forest of Morelos, Mexico, and were stored at room temperature; seed size was estimated through the volume of 75 seeds per provenance/species. Seed germination tests were made periodically from six to 24 months after storage and the effects of provenance and storage time on germination were analyzed using Anovas. There were significant differences in seed size among provenances in all species, while the effect of provenance on germination rate was significant in three of them. Germination rate changed with storage time among species and provenances. After 24 months, germination capacity was still ≥ 50% in all provenances of the two <em>Lysiloma</em> species, but in <em>A.</em> <em>bilimekii</em> there were large differences among provenances. Mean germination capacity was low in <em>H. brasiletto</em> after six months. More research on seed germination and storage of a larger set of species and provenances is needed to restore the Mexican tropical dry forests. </span></span></p>

2018 ◽  
Vol 66 (2) ◽  
pp. 918
Author(s):  
Jhon Alexander Vargas-Figueroa ◽  
Alba Marina Torres-González

Seed germination and seed longevity under different environmental conditions are fundamental to understand the ecological dynamics of a species, since they are decisive for its success within the ecosystem. Taking this into account, seed germination and seed storage behavior of a pioneer species of tropical dry forest (Tecoma stans) were studied in the laboratory, to establish the effect of different environmental conditions on a local tree population. Two seed lots collected in July 2011, from Cali (Colombia), were evaluated under three alternating temperatures (20/30, 20/25, 25/30 ºC; 16/8 h) and four light qualities (12-hour white light photoperiod, darkness, and 15 minutes of red light -R and far red light -FR). Final germination was recorded for all treatments; for white light treatment the daily germination was recorded to calculate mean germination rate, mean germination time, and two synchronization indices. To assess the effect of light quality on physiological variables, a destructive germination test was carried out. For this test, another seed lot was evaluated under the same light conditions using an alternating temperature of 20/30 °C - 16/8 h, recording germination during six days for every treatment. In addition, seeds were stored at two different moisture contents (7.7, 4.1 %) and three storage temperatures (20, 5, -20 ºC), during two time periods (one and three months); a seed germination test was conducted for each treatment. Four replicates of 35 seeds per treatment were used for all experiments. Germination was high (GP > 90 %) with all alternating temperatures under white light, whereas under R, FR, and darkness germination was evenly successful at low temperatures, but at higher temperature, half of the seeds entered into secondary dormancy (GP= 45-65 %). However, mean germination rate and synchronization under R and FR decreased significantly in comparison to white light treatment and, consequently, mean germination time increased. Seed storage behavior of this species is orthodox due to the high germination (GP > 90 %) obtained under all treatments. In conclusion, T. stans seeds have a negative germination response at high incubation temperatures in the absence of white light, entering into a secondary dormancy. In contrast, an environment with a lower temperature and without white light delays the germination, but at the end seeds are able to reach the same germination values. This seed dependence on incident light in limiting conditions suggests a physiological mechanism on the seed tissues of this species, probably mediated by phytochromes. Finally, the orthodox seed storage behavior of T. stans is a reason to include this species in ex situ seed conservation programs for restoration and recovery of the tropical dry forest; however, long-term studies should be conducted in order to evaluate the maintenance of this characteristic throughout longer periods of time. Rev. Biol. Trop. 66(2): 918-936. Epub 2018 June 01. 


Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 604 ◽  
Author(s):  
Philip Marzahn ◽  
Linda Flade ◽  
Arturo Sanchez-Azofeifa

In this paper, we address the retrieval of spatially distributed latent heat flux ( λ E) over a tropical dry forest using multi-spectral and thermal unmanned aerial vehicle (UAV) imagery. The study was carried out in the Santa Rosa National Park Environmental Monitoring Super-Site, Costa Rica, in June 2016. The triangle method was used to derive λ E from the UAV imagery and the results were compared to λ E measurements of an eddy covariance system within the coincident eddy flux tower footprint. The tower footprint was derived using a two-dimensional parameterization model for flux footprint prediction. The comparisons with the flux tower measurements showed a mean relative difference of 10.98% with a slight overestimation of the UAV-based flux retrievals by nearly 7.7 Wm − 2 . The results are in good agreement with satellite-based retrievals, as provided by the literature, for which the triangle method was initially developed and mostly used so far. This study proved to be a promising approach for transferring the triangle method to UAV imagery in ecosystems such as tropical dry forests. With the presented approach, new details in spatially distributed latent heat flux estimates at ultra-high resolution are now possible, thereby potentially closing the gap in spatial resolution between satellites and flux towers. Even more, it allows tracing the latent heat flux from single trees at leaf level. Besides, this approach also opens new perspectives for the monitoring of latent heat fluxes in tropical dry forests.


Diversity ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 231 ◽  
Author(s):  
Luc Legal ◽  
Marine Valet ◽  
Oscar Dorado ◽  
Jose Maria de Jesus-Almonte ◽  
Karime López ◽  
...  

Most evaluations of passive regeneration/natural succession or restoration have dealt with tropical rain forest or temperate ecosystems. Very few studies have examined the regeneration of tropical dry forests (TDF), one of the most damaged ecosystem types in the world. Owing to their species diversity and abundance, insects have been widely used as bioindicators of restoration. Butterflies were among the most abundant and useful groups. We sampled four sites with different levels of anthropogenic disturbance in a Mexican TDF (Morelos State) and compared butterfly communities. A first goal was to examine whether adult butterflies were significant bioindicators owing to their specificity to restricted habitats. A second aim was to determine if differences exist in butterfly communities between some fields abandoned from 4–8, 8–15 and 15–30 years and a reference zone considered as primary forest. We found 40% to 50% of the species of butterflies were specifically related to a habitat and/or a level of anthropogenic disturbance. The time it takes for passive regeneration and recovery of the Mexican tropical dry forest is much higher than 25 years (our older zone), considering that almost none of the butterflies found in our conserved reference zone were present in our 25 year aged study zone.


2009 ◽  
Vol 36 (3) ◽  
pp. 201-207 ◽  
Author(s):  
AYESHA E. PRASAD

SUMMARYAmong the most endangered tropical ecosystems, tropical dry forests are threatened by degradation that includes edge effects arising from perturbations such as the creation and maintenance of roads and other clearings. While much is known about these adverse effects on tree communities in tropical moist forests, similar effects in tropical dry forests are little understood. This paper examines the relationship between roads, road-related exotic plant invasion and tree community change in a tropical dry forest in southern India. Forty pairs of roadside and interior plots across four factorial combinations of road width (wide and narrow) and understorey type (native and exotic) were sampled. Tree death and extant tree community composition were compared using generalized linear models and similarity analyses. Tree death near roads was more than double that away from them, suggesting that roads may increase tree death in these forests. The interactive effect of understorey type (exotic or native) and road width on tree death was significant, with highest tree death near wide roads bordered by exotic understorey. Conversely, tree community composition was influenced by road width and understorey type, but not by proximity to roads. Creation and maintenance of roads for forest management may have serious implications for tree communities in tropical dry forests and should thus be minimized. Exotic plants may also be important contributors to increasing tree death, and further research on their impacts, particularly into underlying mechanisms, is critical to the long-term conservation of tropical dry forest communities.


Author(s):  
Abhinav Yadav ◽  
Pramit Verma ◽  
Akhilesh Singh Raghubanshi

Tropical dry forests (TDFs) are characterized by pronounced seasonality in precipitation, with several months of prolonged drought, 80% of annual precipitation occurring during a four- to six-month rainy season, and high interannual rainfall variability. Surprisingly, there are relatively few studies addressing patterns of functional trait in tropical dry forest (TDF) ecosystems. Functional trait analysis across plant species and the environment is a rapidly developing research field with many possible applications for forest restoration practice. Trait-based ecological research within TDFs will advance our understanding of how these ecosystems interact with and differ from other tropical ecosystems.


2020 ◽  
Vol 21 (10) ◽  
Author(s):  
ISKANDAR Z. SIREGAR ◽  
KARIMA FAUZIAH MUHARAM ◽  
Y. ARIS PURWANTO ◽  
DEDE J. SUDRAJAT

Abstract. Siregar IZ, Muharam KF, Purwanto YA, Sudrajat DJ. 2020. Seed germination characteristics in different storage time of Gmelina arborea treated with ultrafine bubbles priming. Biodiversitas 21: 4558-4564.  Gmelina (Gmelina arborea) seed collected from tropical Indonesian forest experience seed deterioration during storage which is relatively faster than the gmelina seeds originating from temperate regions, such as India and Myanmar. Various treatments have been made to improve the seed viability and vigor after storage through various invigoration techniques. However, the utilization of promising novel technology such as ultrafine bubbles (UFB) has not been evaluated yet. The objective of this study was to determine the effect of seed priming using UFB, polyethylene glycol (PEG), and gibberellic acid (GA3) on the viability and vigor of gmelina seeds that have been stored for one and two years. This study was conducted by employing Completely Randomized Design (CRD) using three replicates. The study showed priming treatment had significant effect and formed average germination capacity of 80% for the seed stored for 1 year.  On the other hand, the priming treatment using PEG-0.8 MPa was the best treatment for germination capacity of 74.67% on 2 years stored seeds. UFB had significant effect on germination capacity, germination rate, growth uniformity, and germination value. This result was expected due to reactive oxygen species (ROS) produced by micro-nano bubbles that could increase physiological activity of the seed cells.


2019 ◽  
Vol 93 ◽  
pp. 204-224 ◽  
Author(s):  
Heather J. Plumpton ◽  
Francis E. Mayle ◽  
Bronwen S. Whitney

AbstractThe Bolivian Chiquitano dry forest is the largest block of intact seasonally dry tropical forest in South America and is a priority ecoregion for conservation due to its high threat status. However, the long-term impacts of drier climatic conditions on tropical dry forests are not well understood, despite climate models predicting increased droughts over Bolivia in the coming century. In this paper, we assess the impacts of drier climatic conditions during the mid-Holocene on the Bolivian Chiquitano tropical dry forest using fossilised pollen, phytoliths, macro-charcoal, and geochemical proxies from a sediment core from a large lake (Laguna Mandioré) on the Bolivia–Brazil border. Our results show that drier climatic conditions during the mid-Holocene caused a local-scale, ecotonal expansion of upland savannah at the expense of dry forest. Interaction between drier climatic conditions and fire regime likely exerted a stronger control over the position of the dry forest–savannah ecotone than edaphic factors. However, the majority of the dry forest within the lake catchment maintained a closed canopy throughout the drier conditions of the mid-Holocene, despite floristic turnover towards more drought-tolerant taxa. These findings imply overall resilience of the Chiquitano dry forest biome to future drought, albeit with floristic changes and upland savannah encroachment at ecotones.


1999 ◽  
Vol 15 (5) ◽  
pp. 637-649 ◽  
Author(s):  
Thomas W. Gillespie

Breeding systems and dispersal mechanisms of plants (≥ 2.5 cm dbh) were examined in fragments of tropical dry forest in Central America to identify life-history characteristics associated with rarity. In particular, the richness and abundance of dioecious and mammal-dispersed trees and shrubs were examined to identify potential associations with precipitation, anthropogenic disturbance, and area. Plots totalling 1000 m2 per site were established in seven nature reserves in Costa Rica (two sites) and Nicaragua (five sites). Overall, tropical dry forests of Central America have a similar proportion of dioecious species to other lowland neotropical forests and a similar proportion of wind-dispersed plants to other tropical dry forests around the world. However, the number of dioecious and mammal-dispersed species declined with decreasing forest cover within each reserve. Although dioecious species were rare in smaller forest fragments, some of these species will not be threatened with regional extinction because they are early successional plants, they have large geographic ranges, and they are not restricted to the tropical dry forest life zone. Mammal-dispersed plants were rare in small fragments, but it is not clear whether this was due to the loss of dispersal vectors or other life-history characteristics.


2021 ◽  
Vol 43 ◽  
Author(s):  
Joana Paula Bispo Nascimento ◽  
Bárbara França Dantas ◽  
Marcos Vinicius Meiado

Abstract: This study evaluates the effects of hydration and dehydration cycles (HD cycles) on seed germination of four Caatinga tree species (Anadenanthera colubrina var. cebil, Enterolobium contortisiliquum, Pityrocarpa moniliformis and Pterogyne nitens) subjected to different temperatures and determine the thermal upper and lower limits of germination. For this, seeds were subjected to 0, 1, 2 and 3 HD cycles and set to germinate at temperatures of 5, 10, 15, 25, 35, 40 and 45 °C. Germinability and t50 were calculated and the differences of these parameters were compared by two-way ANOVA. In addition, germination rate (GR = 1/t50), as well as ceiling (Tc), optimum (To) and base (Tb) temperatures were calculated to estimate the limits below or above which the seeds fail to germinate. We observed that the more HD cycles, the better the seed responds, especially at extreme temperatures. Seeds of all studied species showed To between 25 and 35 °C, Tb < 10 °C, and Tc > 40 °C. The slope of regression curves for germination rate showed that submitting seeds to HD cycles expands its thermal tolerance range, revealing that this seed pre-treatment can be efficient for species as it increases their tolerance to thermal stress.


2019 ◽  
Vol 12 (1) ◽  
pp. 46 ◽  
Author(s):  
Marek Domin ◽  
Franciszek Kluza ◽  
Dariusz Góral ◽  
Sybilla Nazarewicz ◽  
Katarzyna Kozłowicz ◽  
...  

The present research attempts to characterize the effect of low temperatures, and the moisture content of maize (Kosmo 230) meant for sowing on its energy and capacity to germinate. Seeds were moistened to varying degrees and stored under various conditions; then, their germination energy and capacity were assessed. Sowing material with 15% moisture content showed slightly declined germination ability when stored at −25–−20 °C for over three days, while the storage of seeds with a 25 and 30% moisture content at −5–0 °C for 1–3 days had the effect of seed conditioning. Seedlings obtained from conditioned seeds showed sustainability characterized by faster growth, and demonstrated nearly twice the size as other plants. Warehousing and storage of maize grains with a 11.12% moisture content at temperatures up to −25 °C did not significantly affect seed germination capacity or energy, irrespective of storage time.


Sign in / Sign up

Export Citation Format

Share Document