Sensitivity analysis for structural integrity assessment of pressure equipment using partial safety factor method

Author(s):  
T Kaida ◽  
S Izumi ◽  
S Sakai
Author(s):  
Shuo Pan ◽  
Jianping Zhao

When there are uncertainties in the input random variables, or scatter in the material properties, probabilistic assessment is a useful tool for decision making in the field of safety analysis. The partial safety factor (PSF) method was aimed on ensuring that the failure probability did not exceed a target value. In order to be conservative the input value for each random variable during the assessment procedure should be multiplied by the partial safety factors. So it is essentially a deterministic assessment using conservative values of the input random variables and a relatively simple and independent method of assessing failure probabilities using R6 failure assessment diagram. The application of partial safety factors is an important breakthrough of assessment in structures containing defects. In recent years, sets of PSFs for load, defect size, fracture toughness and yield stress had been given in two standards, BS7910 and API579. However, the recommended PSFs in both standards were larger than the original PSFs in PD6493 which was replaced by BS7910. It is therefore a new method of calculating PSFs should be found to prove which is more appropriate and convenient for engineering application. In the case of the partial safety factor method target reliabilities in the range from 0.001 to 0.00001 were considered and new series of PSFs were derived from the results of reliability analysis for the linear elastic fracture mode and elastic-plastic fracture mode. After comparing with the PSFs in BS7910 and API 579, it is concluded that the partial safety factors were generally conservative compared to our research work.


2008 ◽  
Vol 2008 (0) ◽  
pp. _OS0306-1_-_OS0306-2_
Author(s):  
Yuichi MOGAMI ◽  
Shinsuke SAKAI ◽  
Tetsuya SASAKI

2013 ◽  
Vol 4 (4) ◽  
pp. 457-476 ◽  
Author(s):  
Yury Matvienko

Purpose – The purpose of this paper is to develop basic principles of deterministic structural integrity assessment of a component with a crack- or notch-like defect by including safety factors against fracture and plastic collapse in criteria equations of linear and nonlinear fracture mechanics. Design/methodology/approach – The safety factors against fracture are calculated by demanding that the applied critical stress should not be less than the yield stress of the material for a component with a crack or a notch of the acceptable size. Structural integrity assessment of the engineering components damaged by crack- or notch-like defects is discussed from view point of the failure assessment diagram (FAD). The methodology of the FAD has been employed for the structural integrity analysis and assessment of acceptable sizes of throw-thickness notch in a plate under tension and surface longitudinal notch-like defects in a pressure vessel. Findings – Basic equations have been presented to calculate the safety factor against fracture for critical values of the stress intensity factor, crack tip opening displacement (CTOD), the J-integral and the FAD as well as to estimate an acceptable (safe) region for an engineering component with a crack- or notch-like defect of the acceptable size. It was shown that safety factors against fracture depend on both the safety factor against plastic collapse and employed fracture mechanics criterion. The effect of crack/notch tip constraint is incorporated into criteria equations for the calculation of safety factors against fracture. Originality/value – The deterministic method of fracture mechanics is recommended for structural integrity assessment of a component with a crack- or notch-like defect by including safety factors against fracture and plastic collapse in criteria equations of linear and nonlinear fracture mechanics.


2004 ◽  
Vol 26 (2) ◽  
pp. 159-179 ◽  
Author(s):  
Enrique Castillo ◽  
Roberto Mı́nguez ◽  
Ana Ruiz Terán ◽  
Alfonso Fernández-Canteli

2003 ◽  
Vol 82 (2) ◽  
pp. 207-216 ◽  
Author(s):  
Enrique Castillo ◽  
Antonio J. Conejo ◽  
Roberto Mı́nguez ◽  
Carmen Castillo

Sign in / Sign up

Export Citation Format

Share Document