scholarly journals Reliability-Based Structural Integrity Assessment of Wall-Thinned Pipes Using Partial Safety Factor

2013 ◽  
Vol 22 (3_1spc) ◽  
pp. 518-524
Author(s):  
Jae-Bin Lee ◽  
Nam-Su Huh ◽  
Chi-Yong Park
Author(s):  
Shuo Pan ◽  
Jianping Zhao

When there are uncertainties in the input random variables, or scatter in the material properties, probabilistic assessment is a useful tool for decision making in the field of safety analysis. The partial safety factor (PSF) method was aimed on ensuring that the failure probability did not exceed a target value. In order to be conservative the input value for each random variable during the assessment procedure should be multiplied by the partial safety factors. So it is essentially a deterministic assessment using conservative values of the input random variables and a relatively simple and independent method of assessing failure probabilities using R6 failure assessment diagram. The application of partial safety factors is an important breakthrough of assessment in structures containing defects. In recent years, sets of PSFs for load, defect size, fracture toughness and yield stress had been given in two standards, BS7910 and API579. However, the recommended PSFs in both standards were larger than the original PSFs in PD6493 which was replaced by BS7910. It is therefore a new method of calculating PSFs should be found to prove which is more appropriate and convenient for engineering application. In the case of the partial safety factor method target reliabilities in the range from 0.001 to 0.00001 were considered and new series of PSFs were derived from the results of reliability analysis for the linear elastic fracture mode and elastic-plastic fracture mode. After comparing with the PSFs in BS7910 and API 579, it is concluded that the partial safety factors were generally conservative compared to our research work.


2008 ◽  
Vol 2008 (0) ◽  
pp. _OS0306-1_-_OS0306-2_
Author(s):  
Yuichi MOGAMI ◽  
Shinsuke SAKAI ◽  
Tetsuya SASAKI

2013 ◽  
Vol 4 (4) ◽  
pp. 457-476 ◽  
Author(s):  
Yury Matvienko

Purpose – The purpose of this paper is to develop basic principles of deterministic structural integrity assessment of a component with a crack- or notch-like defect by including safety factors against fracture and plastic collapse in criteria equations of linear and nonlinear fracture mechanics. Design/methodology/approach – The safety factors against fracture are calculated by demanding that the applied critical stress should not be less than the yield stress of the material for a component with a crack or a notch of the acceptable size. Structural integrity assessment of the engineering components damaged by crack- or notch-like defects is discussed from view point of the failure assessment diagram (FAD). The methodology of the FAD has been employed for the structural integrity analysis and assessment of acceptable sizes of throw-thickness notch in a plate under tension and surface longitudinal notch-like defects in a pressure vessel. Findings – Basic equations have been presented to calculate the safety factor against fracture for critical values of the stress intensity factor, crack tip opening displacement (CTOD), the J-integral and the FAD as well as to estimate an acceptable (safe) region for an engineering component with a crack- or notch-like defect of the acceptable size. It was shown that safety factors against fracture depend on both the safety factor against plastic collapse and employed fracture mechanics criterion. The effect of crack/notch tip constraint is incorporated into criteria equations for the calculation of safety factors against fracture. Originality/value – The deterministic method of fracture mechanics is recommended for structural integrity assessment of a component with a crack- or notch-like defect by including safety factors against fracture and plastic collapse in criteria equations of linear and nonlinear fracture mechanics.


Author(s):  
Daigo Watanabe ◽  
Kiminobu Hojo

This paper introduces an example of structural integrity evaluation for Light Water Reactor (LWR) against excessive loads on the Design Extension Condition (DEC). In order to assess the design acceptance level of DEC, three acceptance criteria which are the stress basis limit of the current design code, the strain basis limit of the current design code and the strain basis limit by using Load and Resistance Factor Design (LRFD) method were applied. As a result the allowable stress was increased by changing the acceptance criteria from the stress basis limit to the strain basis limit. It is shown that the practical margin of the LWR’s components still keeps even on DEC by introducing an appropriate criterion for integrity assessment and safety factors.


Author(s):  
Sébastien Fouques ◽  
Ole Andreas Hermundstad

The paper is concerned with the launch of free-fall lifeboats (FFL). It proposes a method that complies with the DNV-OS-E406 standard in order to select characteristic launches from Monte Carlo simulations for further structural load assessment with CFD and FEM. Proxy variables derived from kinematic parameters and aiming at predicting pressure load indicators are computed with the VARUNA launch simulator developed by MARINTEK. The statistical distributions of the proxy variables obtained from the Monte Carlo simulations are used to identify critical scenarios, and characteristic launches can then be selected from a chosen probability level. The feasibility of the proposed method is documented in the paper for several types of pressure loads. Existing model test data from various FFL-launch campaigns in calm water and in waves are used to compute the proxy variables as it would be done in the VARUNA simulator. Scatter diagrams showing the correlation with actual measured pressure load indicators are then established to assess the quality of the chosen proxy variables.


Author(s):  
Dominique Moinereau ◽  
Jean-Michel Frund ◽  
Henriette Churier-Bossennec ◽  
Georges Bezdikian ◽  
Alain Martin

A significant extensive Research & Development work is conducted by Electricite´ de France (EDF) related to the structural integrity re-assessment of the French 900 and 1300 MWe reactor pressure vessels in order to increase their lifetime. Within the framework of this programme, numerous developments have been implemented or are in progress related to the methodology to assess flaws during a pressurized thermal shock (PTS) event. The paper contains three aspects: a short description of the specific French approach for RPV PTS assessment, a presentation of recent improvements on thermalhydraulic, materials and mechanical aspects, and finally an overview of the present R&D programme on thermalhydraulic, materials and mechanical aspects. Regarding the last aspect on present R&D programme, several projects in progress will be shortly described. This overview includes the redefinition of some significant thermalhydraulic transients based on some new three-dimensional CFD computations (focused at the present time on small break LOCA transient), the assessment of vessel materials properties, and the improvement of the RPV PTS structural integrity assessment including several themes such as warm pre-stress (WPS), crack arrest, constraint effect ....


Sign in / Sign up

Export Citation Format

Share Document