Magnetofection: Using Magnetic Particles and Magnetic Force to Enhance and Target Nucleic Acid Delivery

2015 ◽  
pp. 347-420 ◽  
Author(s):  
Christian Plank ◽  
Dialechti Vlaskou ◽  
Yolanda Sanchez-Antequera ◽  
Olga Mykhaylyk
2003 ◽  
Vol 3 (5) ◽  
pp. 745-758 ◽  
Author(s):  
Christian Plank ◽  
Martina Anton ◽  
Carsten Rudolph ◽  
Joseph Rosenecker ◽  
Florian Krötz

Pharmaceutics ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 964 ◽  
Author(s):  
Yoko Endo-Takahashi ◽  
Yoichi Negishi

The regulation of gene expression is a promising therapeutic approach for many intractable diseases. However, its use in clinical applications requires the efficient delivery of nucleic acids to target tissues, which is a major challenge. Recently, various delivery systems employing physical energy, such as ultrasound, magnetic force, electric force, and light, have been developed. Ultrasound-mediated delivery has particularly attracted interest due to its safety and low costs. Its delivery effects are also enhanced when combined with microbubbles or nanobubbles that entrap an ultrasound contrast gas. Furthermore, ultrasound-mediated nucleic acid delivery could be performed only in ultrasound exposed areas. In this review, we summarize the ultrasound-mediated nucleic acid systemic delivery system, using microbubbles or nanobubbles, and discuss its possibilities as a therapeutic tool.


Author(s):  
Mengdi Bao ◽  
Erik Jensen ◽  
Yu Chang ◽  
Grant Korensky ◽  
Ke Du

ABSTRACTWe have developed a novel detection system which couples CRISPR-Cas recognition of target sequences, Cas mediated nucleic acid probe cleavage, and quantum dots as highly sensitive reporter molecules for instrument-free detection of viral nucleic acid targets. After target recognition and Cas mediated cleavage of biotinylated ssDNA probe molecules, the probe molecules are bound to magnetic particles. A complimentary ssDNA oligonucleotide quantum dot conjugate is then added, which only hybridizes to un-cleaved probes on the magnetic beads. After separation of hybridized from unhybridized quantum dot conjugates by magnetic sequestration, the signal is measured fluorometrically to provide a signal proportional to the cleaved probes and therefore the amount of target nucleic acid. To demonstrate the power of this assay, a 250 bp DNA target sequence matching a portion of the African swine fever virus (ASFV) genome is used and a detection limit of ~0.5 nM is achieved without target amplification using a simple portable ultraviolet flashlight. The positive samples are readily confirmed by visual inspection, completely avoiding the need for complicated devices and instruments. This work establishes the feasibility of a simple, instrument free assay for rapid nucleic acid screening in both hospitals and point-of-care settings.


2011 ◽  
Vol 8 (3) ◽  
pp. 235-244 ◽  
Author(s):  
Mahmoud Elsabahy ◽  
Adil Nazarali ◽  
Marianna Foldvari

2021 ◽  
pp. 2011103
Author(s):  
Kingshuk Dutta ◽  
Ritam Das ◽  
Jewel Medeiros ◽  
Pintu Kanjilal ◽  
S. Thayumanavan

2006 ◽  
Vol 50 (8) ◽  
pp. 2797-2805 ◽  
Author(s):  
Jingsong Zhu ◽  
Paul W. Luther ◽  
Qixin Leng ◽  
A. James Mixson

ABSTRACT A family of histidine-rich peptides, histatins, is secreted by the parotid gland in mammals and exhibits marked inhibitory activity against a number of Candida species. We were particularly interested in the mechanism by which histidine-rich peptides inhibit fungal growth, because our laboratory has synthesized a variety of such peptides for drug and nucleic acid delivery. In contrast to naturally occurring peptides that are linear, peptides made on synthesizers can be varied with respect to their degrees of branching. Using this technology, we explored whether histidine-lysine (HK) polymers of different complexities and degrees of branching affect the growth of several species of Candida. Polymers with higher degrees of branching were progressively more effective against Candida albicans, with the four-branched polymer, H2K4b, most effective. Furthermore, H2K4b accumulated efficiently in C. albicans, which may indicate its ability to transport other antifungal agents intracellularly. Although H2K4b had greater antifungal activity than histatin 5, their mechanisms were similar. Toxicity in C. albicans induced by histatin 5 or branched HK peptides was markedly reduced by 4,4′-diisothiocyanato-stilbene-2,2′-disulfonate, an inhibitor of anion channels. We also determined that bafilomycin A1, an inhibitor of endosomal acidification, significantly decreased the antifungal activity of H2K4b. This suggests that the pH-buffering and subsequent endosomal-disrupting properties of histidine-rich peptides have a role in their antifungal activity. Moreover, the ability of the histidine component of these peptides to disrupt endosomes, which allows their escape from the lysosomal pathway, may explain why these peptides are both effective antifungal agents and nucleic acid delivery carriers.


2011 ◽  
Vol 2 (4) ◽  
pp. 471-482 ◽  
Author(s):  
Nicolas Laurent ◽  
Cédric Sapet ◽  
Loic Le Gourrierec ◽  
Elodie Bertosio ◽  
Olivier Zelphati

Author(s):  
Hamideh Parhiz ◽  
Maryam Hashemi ◽  
Arash Hatefi ◽  
Wayne Thomas Shier ◽  
Sara Amel Farzad ◽  
...  

2010 ◽  
Vol 20 (3) ◽  
pp. 127-136 ◽  
Author(s):  
Praneet Opanasopit ◽  
Sunee Techaarpornkul ◽  
Theerasak Rojanarata ◽  
Tanasait Ngawhirunpat ◽  
Uracha Ruktanonchai

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi104-vi105
Author(s):  
Akanksha Mahajan ◽  
Lisa Hurley ◽  
Serena Tommasini-Ghelfi ◽  
Corey Dussold ◽  
Alexander Stegh ◽  
...  

Abstract The Stimulator of Interferon Genes (STING) pathway represents a major innate immune sensing mechanism for tumor-derived DNA. Modified cyclic dinucleotides (CDNs) that mimic the endogenous STING ligand cGAMP are currently being explored in patients with solid tumors that are amenable to intratumoral delivery. Inadequate bioavailability and insufficient lipophilicity are limiting factors for clinical CDN development, in particular when consideration is given to systemic administration approaches. We have shown that the formulation of oligonucleotides into Spherical Nucleic Acid (SNA) nanostructures, i.e.,the presentation of oligonucleotides at high density on the surface of nanoparticle cores, lead to biochemical and biological properties that are radically different from those of linear oligonucleotides. First-generation brain-penetrant siRNA-based SNAs (NCT03020017, recurrent GBM) have recently completed early clinical trials. Here, we report the development of a STING-agonistic immunotherapy by targeting cGAS, the sensor of cytosolic dsDNA upstream of STING, with SNAs presenting dsDNA at high surface density. The strategy of using SNAs exploits the ability of cGAS to raise STING responses by delivering dsDNA and inducing the catalytic production of endogenous CDNs. SNA nanostructures carrying a 45bp IFN-simulating dsDNA oligonucleotide, the most commonly used and widely characterized cGAS activator, potently activated the cGAS-STING pathway in vitro and in vivo. In a poorly immunogenic and highly aggressive syngeneic mouse glioma model, in which tumours were well-established, only one dose of intranasal treatment with STING-SNAs decelerated tumour growth, improved survival and importantly, was well-tolerated. Our use of SNAs addresses the challenges of nucleic acid delivery to intracranial tumor sites via intranasal route, exploits the binding of dsDNA molecules on the SNA surface to enhance the formation of a dimeric cGAS:DNA complex and establishes cGAS-agonistic SNAs as a novel class of immune-stimulatory modalities for triggering innate immune responses against tumor.


Sign in / Sign up

Export Citation Format

Share Document