Energy, environmental and geological engineering

2019 ◽  
Vol 12 ◽  
pp. 141-150
Author(s):  
I.P. Bashilov ◽  
◽  
A.A. Vereshchagin ◽  
L.S. Zagorskiy ◽  
D.L. Zagorskiy ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2034
Author(s):  
Jerzy Trzciński ◽  
Emilia Wójcik ◽  
Mateusz Marszałek ◽  
Paweł Łukaszewski ◽  
Marek Krajewski ◽  
...  

The paper presents the basic problem related with practical application of carbonate rocks in construction: are carbonate aggregates produced from such rocks favorable for building engineering, particularly for road design and construction? To resolve this problem, (1) the geological-engineering properties of aggregates are presented, (2) the correlation between petrographic and engineering parameters is shown, and (3) a strict correlation between the geological-engineering properties and the freezing-thawing and crushing resistance is recognized. This knowledge has allowed to assess the usefulness of asphalt concrete (AC) made from dolomite and limestone aggregates in the design and construction of road surface structures. The petrography was characterized using optical microscopy and scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscope (EDS). Engineering properties were determined in accordance with European and Polish norms and guidelines. Statistical and design calculations were performed using dedicated software. The petrographic properties, and selected physical and mechanical parameters of the aggregates, were tested to show their influence on the freezing–thawing and crushing resistance. Strong functional relationships between the water adsorption, and the freezing–thawing and crushing resistance have been observed. Aggregate strength decreased after saturation with increasing concentrations of salt solutions. Calculations of AC fatigue durability and deformation allow for reducing the thickness of the road surface structure by about 20% in comparison to normative solutions. This conclusion has impact on the economy of road design and construction, and allows for a rational utilization of rock resources, which contributes to sustainable development of the construction industry.


2021 ◽  
Vol 11 (1) ◽  
pp. 744-754
Author(s):  
Marzena Lendo-Siwicka ◽  
Grzegorz Wrzesiński ◽  
Katarzyna Pawluk

Abstract Improper recognition of the subsoil is the most common cause of problems in the implementation of construction projects and construction facilities failures. Most often, their direct cause is the mismatch of the scope of geotechnical diagnosis to the appropriate geotechnical category, or substantive errors, including incomplete or incorrect interpretation in the creation of a geological-engineering model and often overlooked hydrogeological conditions. In many cases, insufficient recognition and documentation of geotechnical and/or geological and engineering conditions leads to damage and construction failures, delays in consider construction, and the increase of the investment budget. That’s why, in order to avoid the above, particular attention should be paid to proper geotechnical and geological-engineering documentation at the design and construction stages. The selected example of the investment analyzed errors in the geological-engineering documentation, which mainly concerned the lack of recognition of locally occurring organic soils, the incorrectly determined location of the groundwater table and the degree of compaction of non-cohesive soils, and numerous errors of calculated values of soil uplift pressure. The detection of the errors presented in the paper made it possible to select the correct technology for the construction of the sanitary sewage system and to increase the thickness of the horizontal shutter made of jet grouting columns in the area of the excavation. In addition, the article discusses the principles of proper calculation of limit states and subsoil testing, which have a significant impact on the implementation of planned investments.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Salahuddin Husein ◽  
Saptono Budi Samodra ◽  
Subagyo Pramumijoyo ◽  
Wahyu Astuti

Kedulan Site is the buried and ruined 9th century Mataram Hindu Kingdom temple, located in Tirtomartani Village, Kalasan District, Sleman Regency, Yogyakarta Special Province. This temple was incidentally discovered by sand diggers on 24 November 1993 under several meter thick of fluvio-volcanic deposit of the modern Merapi. Several technical studies were needed to carefully excavate the temple, including geology and geophysical approaches. One of the geophysical method have been applied was ground penetration radar (georadar). This method uses radar technology to obtain a continuous profile of the shallow sub-surface and thus allows scientists to image soil substratums based on differing dielectric constants. Georadar investigation by Department of Geological Engineering, Faculty of Engineering, Universitas Gadjah Mada, was conducted on 4 December 2007. The main purpose was to identify the location of the outer stone fence as an estimation to define the temple site area to be excavated. About one line was chosen to cross the site in north-south direction in a distance of 328 m. Two runs were completed on the same line but different courses, i.e. forward and backward, where one was checked with another. The result indicates the presence of the outer stone fence was possibly buried in a depth of 7 m. It was located about 40 m distance outside the inner stone fence. Assuming the fences were quadrangle relative to the main temple, hence it is estimated that the site area to be excavated is about 13.830 m² and total 96.808 m³ gravels and sands to be removed.


2020 ◽  
pp. 232-255
Author(s):  
Mark Henstridge

There are large volumes of gas offshore Tanzania, which has raised hopes of a boom and accelerated economic development. With such big numbers associated with the natural gas, it is not hard to imagine the fantastic prospects of increased wealth and accelerated development. But those hopes look set to be disappointed. A boom would depend heavily on there being a sizeable flow of revenue to government from producing and exporting gas. This chapter sets out the scale of the gas, and the array of risks which currently make investment in gas production, and any associated boom, unlikely. As well as geological, engineering, and market risks, the risks to investment from public policy have been elevated over the last few years.


Sign in / Sign up

Export Citation Format

Share Document