Experimental Investigation on the Effects of Nano Clay on Mechanical Properties of Aged Asphalt Mixture

Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1554 ◽  
Author(s):  
Pan Pan ◽  
Yi Kuang ◽  
Xiaodi Hu ◽  
Xiao Zhang

In this study, the aged asphalt binder and mixture were laboratory prepared through short-term ageing testing and long-term ageing testing. Firstly, the effect of rejuvenator on physical properties of aged asphalt binders was investigated. In addition, a series of laboratory tests were performed to evaluate the influence of ageing and rejuvenator content on the mechanical properties, durability and dynamic characteristics of asphalt mixtures. Physical test results of asphalt binder testified that rejuvenator used can efficiently recover the aged asphalt binder. However, the effect of ageing and rejuvenator content exhibits different trends depending on the physical property tests conducted. Moreover, artificially aged asphalt mixture with rejuvenator has better ability to resist moisture damage and ravelling. In addition, the ITSR value is more suitable to evaluate the moisture susceptibility for asphalt recycling. Although rejuvenator improves the thermal cracking resistance and fatigue property of aged asphalt mixture, rejuvenated mixture shows greater modulus and inferior ability to resist reflective cracking than the unaged mixture. Moreover, rejuvenated mixture shows less dependence on frequency at high temperature regions and stronger dependence at low temperature regions compared to unaged and long-term aged mixtures.


2010 ◽  
Vol 7 (2) ◽  
pp. 57
Author(s):  
Jamaludin Kasim ◽  
Shaikh Abdul Karim Yamani ◽  
Ahmad Firdaus Mat Hedzir ◽  
Ahmad Syafiq Badrul Hisham ◽  
Mohd Arif Fikri Mohamad Adnan

An experimental investigation was performed to evaluate the properties of cement-bonded particleboard made from Sesendok wood. The target board density was set at a standard 1200 kg m". The effect offarticle size, wood to cement ratio and the addition ofsodium silicate and aluminium silicate on the wood cement board properties has been evaluated. A change ofparticle size from 1.0 mm to 2.0 mm has a significant effect on the mechanical properties, however the physical properties deteriorate. Increasing the wood to cement ratio from 1:2.25 to 1:3 decreases the modulus ofrupture (MOR) by 11% and the addition ofsodium silicate improves valuesfurther by about 28% compared to the addition ofaluminum silicate. The modulus ofelasticity (MOE) in general increases with increasing cement content, but is not significantly affected by the addition ofsodium silicate or aluminium silicate, although the addition of their mixture (sodium silicate andaluminium silicate) consistentlyyields greater MOE values. Water absorption and thickness swelling is significantly affected by the inclusion ofadditives and better values are attained using higher wood to cement ratios.


2020 ◽  
Vol 57 (3) ◽  
pp. 249-259
Author(s):  
Baifen Liu ◽  
Mohammad Mirjalili ◽  
Peiman Valipour ◽  
Sajad Porzal ◽  
shirin Nourbakhsh

This research deals with the mechanical properties, microstructure, and interrelations of triple nanocomposite based on PET/EPDM/Nanoclay. These properties were examined in different percentages of PET/EPDM blend with compatibilizer (Styrene-Ethylene/Butylene-Styrene)-G-(Maleic anhydrate) (SEBS-g-MAH). Results showed that the addition of 15% SEBS-g-MAH improved the toughness and impact strength of this nanocomposite. SEM micrographs indicated the most stable fuzzy microstructure in a 50/50 mixture of scattered phases of EPDM/SEBS-g-MAH. The effects of percentages of 1, 3, 5, 7 nanoclay Cloisite 30B (C30B) on the improvement of the properties were evaluated. With the addition of nano clay, the toughness and impact strength was reduced. Thermal destruction of nanoclay in processing temperature led to the decreasing dispersion of clay plates in the matrix and a reduction in the distances of nano clay plates in the composite compared to pure nano clay. XRD and TEM analysis was used to demonstrate the results. By adding 1% of nanoclay to the optimal sample, maximum stiffness, and Impact strength, among other nanocomposites, was achieved.


Sign in / Sign up

Export Citation Format

Share Document