Design and Optimization of Wideband Log-Periodic Dipole Arrays under Requirements for High Gain, High Front-to-Back Ratio, Optimal Gain Flatness, and Low Side Lobe Level: The Application of Invasive Weed Optimization

2012 ◽  
Vol 4 (6) ◽  
pp. 635-646
Author(s):  
Ahmed Najah Jabbar ◽  
Ali Shaban Hasooni ◽  
Muthana Khallil Ibrahim

In this study, we present the implementation of invasive weed optimization (IWO) in the maximization of main-lobe to side-lobe level for the non-uniform planar antenna array. The antenna arrays investigated in this study are generated using the chaos game algorithm (CGA) and shaped into selected fractal geometries chosen on the basis of their interesting performance. This CGA is picked out in order to overcome the limitations found in the fractal arrays. All the attained results are compared with the results produced by a well-known optimization algorithm that is the particle swarm optimization (PSO). In all the optimized arrays, IWO shows superior optimization results compared with PSO.


2017 ◽  
Vol 10 (3) ◽  
pp. 368-375
Author(s):  
Hua Guo ◽  
Lin Cui ◽  
Xiaodan Zhang ◽  
Yameng Jiao

Synthesis of non-uniform circular antenna arrays using a hybrid invasive weed optimization is introduced in this paper. The excitation weights and positions of array elements are optimized to reduce the peak side lobe level (PSLL) of the radiation pattern. The method proposed in this paper can effectively constrain the number of the array elements, size of the array, and the angular spacing of the adjacent element simultaneously. The radiation pattern has the constraint of a fixed major lobe beamwidth. Synthesis results of three different circular antenna arrays are given. The results show the effectiveness and feasibility of the proposed synthesis method in non-uniform circular antenna arrays.


Author(s):  
Hua Guo ◽  
Guangrui Jing ◽  
Mian Dong ◽  
Lijian Zhang ◽  
Xiaodan Zhang

AbstractPattern synthesis of non-uniform elliptical antenna arrays is presented in this paper. Only the element positions of the antenna arrays are optimized by the combination of differential evolution (DE) and invasive weed optimization (IWO) to reduce the peak side lobe level (PSLL) of the radiation pattern. In order to avoid the overlap of the array elements, the minimum spacing of the adjacent elements is constrained. Also, the beam width of the radiation pattern can be constrained effectively. Three elliptical antenna arrays that have 8, 12, and 20 elements are investigated. The synthesis results show that the introduced method can present a good side lobe reduction for the radiation pattern. Compared with other optimization methods, the method proposed in this paper can obtain better performance.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Huaning Wu ◽  
Chao Liu ◽  
Xu Xie

A novel invasive weed optimization (IWO) variant called chaotic adaptive invasive weed optimization (CAIWO) is proposed and applied for the optimization of nonuniform circular antenna arrays. A chaotic search method has been combined into the modified IWO with adaptive dispersion, where the seeds produced by a weed are dispersed in the search space with standard deviation specified by the fitness value of the weed. To evaluate the performance of CAIWO, several representative benchmark functions are minimized using various optimization algorithms. Numerical results demonstrate that the proposed approach improves the performance of the algorithm significantly, in terms of both the convergence speed and exploration ability. Moreover, the scheme of CAIWO is employed to find out an optimal set of weights and antenna element separation to obtain a radiation pattern with maximum side-lobe level (SLL) reduction with different numbers of antenna element under two cases with different purposes. The design results obtained by CAIWO have comfortably outperformed the published results obtained by other state-of-the-art metaheuristics in a statistically meaningful way.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Zhenkai Zhang ◽  
Xinxing Liu ◽  
Bing Zhang ◽  
Hailin Li

In this paper, pattern synthesis through time-modulated linear array is studied, and a novel strategy for harmonic beamforming in time-modulated array is proposed. The peak side lobe level is designed as optimization objective function, and the switch-on time sequence of each element is selected as optimization variable. An improved invasive weed optimization (IWO) algorithm is developed in order to determine the optimal parameters describing the pulse sequence used to modulate the excitation weights of array elements. Representative results are reported and discussed to point out potentialities and advantages of the proposed approach, which can obtain lower objective function values.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Yu Zhai ◽  
Ding Xu ◽  
Yan Zhang

This paper presents a lightweight, cost-efficient, wideband, and high-gain 3D printed parabolic reflector antenna in the Ka-band. A 10 λ reflector is printed with polylactic acid- (PLA-) based material that is a biodegradable type of plastic, preferred in 3D printing. The reflecting surface is made up of multiple stacked layers of copper tape, thick enough to function as a reflecting surface (which is found 4 mm). A conical horn is used for the incident field. A center-fed method has been used to converge the energy in the broadside direction. The proposed antenna results measured a gain of 27.8 dBi, a side lobe level (SLL) of −22 dB, and a maximum of 61.2% aperture efficiency (at 30 GHz). A near-field analysis in terms of amplitude and phase has also been presented which authenticates the accurate spherical to planar wavefront transformation in the scattered field.


2014 ◽  
Vol 60 (1) ◽  
pp. 120-127 ◽  
Author(s):  
Zaharias D. Zaharis ◽  
Pavlos I. Lazaridis ◽  
John Cosmas ◽  
Christos Skeberis ◽  
Thomas D. Xenos

Sign in / Sign up

Export Citation Format

Share Document