scholarly journals 1064 Measurement of Antiviral Drugs Active Against Varicella Zoster Virus (VZV) Using ELISA Directly on Infected Cells: Superiority Over Plaque-Reduction Assay (PRA)

1985 ◽  
Vol 19 (4) ◽  
pp. 288A-288A
Author(s):  
F E Berkowitz ◽  
M J Levin
1996 ◽  
Vol 7 (2) ◽  
pp. 71-78 ◽  
Author(s):  
T. H. Bacon ◽  
J. Gilbart ◽  
B. A. Howard ◽  
R. Standring-Cox

The effect of penciclovir (BRL 39123) on the replication of varicella-zoster virus (VZV) in human embryonic lung fibroblasts (MRC-5 cells) was similar to aciclovir when the compounds were present continuously. However, when the compounds were withdrawn the antiviral activity of penciclovir was maintained more effectively than that of aciclovir. In the plaque reduction assay, median 50% effective concentrations (EC50s) were 3.8 μg ml−1 for penciclovir and 4.2 μg ml−1 for aciclovir ( n = 29 clinical isolates). Similarly, penciclovir and aciclovir were equally effective in reducing the numbers of VZV-infected MRC-5 cells and in reducing VZV DNA synthesis within infected cells following continuous treatment. Within VZV-infected cells (S)-penciclovir-triphosphate was formed from penciclovir with >95% enantiomeric purity, and the concentration of penciclovir-triphosphate was 360-fold greater than aciclovir-triphosphate immediately after treatment. This phosphorylation ratio compensates for the lower affinity of VZV DNA polymerase for penciclovir-triphosphate compared with aciclovir-triphosphate (Kis = 7.5 μM and 0.2 μM, respectively). When VZV-infected cultures were treated for 3 days, followed by withdrawal of the compound, inhibition of viral DNA synthesis by penciclovir was maintained for 24 h, whereas viral DNA synthesis resumed more readily after removal of aciclovir. Furthermore, following 8 h daily pulse treatment for 5 days, penciclovir was significantly more active than aciclovir in reducing VZV DNA synthesis ( p = 0.006, n = 10 clinical isolates). The long intracellular half-life of penciclovir-triphosphate (9.1 h) compared with that of aciclovir-triphosphate (0.8 h) accounts for the sustained inhibition of virus replication by penciclovir. This property may contribute to the clinical efficacy of famciclovir, the oral form of penciclovir.


2020 ◽  
Vol 94 (22) ◽  
Author(s):  
Megan G. Lloyd ◽  
Nicholas A. Smith ◽  
Michael Tighe ◽  
Kelsey L. Travis ◽  
Dongmei Liu ◽  
...  

ABSTRACT The herpesviruses varicella-zoster virus (VZV) and human cytomegalovirus (HCMV) are endemic to humans. VZV causes varicella (chicken pox) and herpes zoster (shingles), while HCMV causes serious disease in immunocompromised patients and neonates. More effective, less toxic antivirals are needed, necessitating better models to study these viruses and evaluate antivirals. Previously, VZV and HCMV models used fetal tissue; here, we developed an adult human skin model to study VZV and HCMV in culture and in vivo. While VZV is known to grow in skin, it was unknown whether skin could support an HCMV infection. We used TB40/E HCMV and POka VZV strains to evaluate virus tropism in skin organ culture (SOC) and skin xenograft mouse models. Adult human skin from reduction mammoplasties was prepared for culture on NetWells or mouse implantation. In SOC, VZV infected the epidermis and HCMV infected the dermis. Specifically, HCMV infected fibroblasts, endothelial cells, and hematopoietic cells, with some infected cells able to transfer infection. VZV and HCMV mouse models were developed by subcutaneous transplantation of skin into SCID/beige or athymic nude mice at 2 independent sites. Viruses were inoculated directly into one xenograft, and widespread infection was observed for VZV and HCMV. Notably, we detected VZV- and HCMV-infected cells in the contralateral, uninoculated xenografts, suggesting dissemination from infected xenografts occurred. For the first time, we showed HCMV successfully grows in adult human skin, as does VZV. Thus, this novel system may provide a much-needed preclinical small-animal model for HCMV and VZV and, potentially, other human-restricted viruses. IMPORTANCE Varicella-zoster virus and human cytomegalovirus infect a majority of the global population. While they often cause mild disease, serious illness and complications can arise. Unfortunately, there are few effective drugs to treat these viruses, and many are toxic. To complicate this, these viruses are restricted to replication in human cells and tissues, making them difficult to study in traditional animal models. Current models rely heavily on fetal tissues, can be prohibitively expensive, and are often complicated to generate. While fetal tissue models provide helpful insights, it is necessary to study human viruses in human tissue systems to fully understand these viruses and adequately evaluate novel antivirals. Adult human skin is an appropriate model for these viruses because many target cells are present, including basal keratinocytes, fibroblasts, dendritic cells, and lymphocytes. Skin models, in culture and xenografts in immunodeficient mice, have potential for research on viral pathogenesis, tissue tropism, dissemination, and therapy.


2016 ◽  
Vol 90 (19) ◽  
pp. 8673-8685 ◽  
Author(s):  
Erin M. Buckingham ◽  
Keith W. Jarosinski ◽  
Wallen Jackson ◽  
John E. Carpenter ◽  
Charles Grose

ABSTRACTVaricella-zoster virus (VZV) is an extremely cell-associated herpesvirus with limited egress of viral particles. The induction of autophagy in VZV-infected monolayers is easily detectable; inhibition of autophagy leads to decreased VZV glycoprotein biosynthesis and diminished viral titers. To explain how autophagic flux could exert a proviral effect on the VZV infectious cycle, we postulated that the VZV exocytosis pathway following secondary envelopment may converge with the autophagy pathway. This hypothesis depended on known similarities between VZV gE and autophagy-related (Atg) Atg9/Atg16L1 trafficking pathways. Investigations were carried out with highly purified fractions of VZV virions. When the virion fraction was tested for the presence of autophagy and endosomal proteins, microtubule-associated protein 1 light chain (MAP1LC3B) and Ras-like GTPase 11 (Rab11) were detected. By two-dimensional (2D) and 3D imaging after immunolabeling, both proteins also colocalized with VZV gE in a proportion of cytoplasmic vesicles. When purified VZV virions were enumerated after immunoelectron microscopy, gold beads were detected on viruses following incubation with antibodies to VZV gE (∼100%), Rab11 (50%), and LC3B (30%). Examination of numerous electron micrographs demonstrated that enveloped virions were housed in single-membraned vesicles; viral particles were not observed in autophagosomes. Taken together, our data suggested that some viral particles after secondary envelopment accumulated in a heterogeneous population of single-membraned vesicular compartments, which were decorated with components from both the endocytic pathway (Rab11) and the autophagy pathway (LC3B). The latter cytoplasmic viral vesicles resembled an amphisome.IMPORTANCEVZV infection leads to increased autophagic flux, while inhibition of autophagy leads to a marked reduction in virus spread. In this investigation of the proviral role of autophagy, we found evidence for an intersection of viral exocytosis and autophagy pathways. Specifically, both LC3-II and Rab11 proteins copurified with some infectious VZV particles. The results suggested that a subpopulation of VZV particles were carried to the cell surface in single-walled vesicles with attributes of an amphisome, an organelle formed from the fusion of an endosome and an autophagosome. Our results also addressed the interpretation of autophagy/xenophagy results with mutated herpes simplex virus lacking its ICP34.5 neurovirulence gene (HSVΔ34.5). The VZV genome lacks an ICP34.5 ortholog, yet we found no evidence of VZV particles housed in a double-membraned autophagosome. In other words, xenophagy, a degradative process documented after infection with HSVΔ34.5, was not observed in VZV-infected cells.


2006 ◽  
Vol 81 (2) ◽  
pp. 761-774 ◽  
Author(s):  
Cristian Cilloniz ◽  
Wallen Jackson ◽  
Charles Grose ◽  
Donna Czechowski ◽  
John Hay ◽  
...  

ABSTRACT The varicella-zoster virus (VZV) ORF9 protein is a member of the herpesvirus UL49 gene family but shares limited identity and similarity with the UL49 prototype, herpes simplex virus type 1 VP22. ORF9 mRNA is the most abundantly expressed message during VZV infection; however, little is known concerning the functions of the ORF9 protein. We have found that the VZV major transactivator IE62 and the ORF9 protein can be coprecipitated from infected cells. Yeast two-hybrid analysis localized the region of the ORF9 protein required for interaction with IE62 to the middle third of the protein encompassing amino acids 117 to 186. Protein pull-down assays with GST-IE62 fusion proteins containing N-terminal IE62 sequences showed that amino acids 1 to 43 of the acidic transcriptional activation domain of IE62 can bind recombinant ORF9 protein. Confocal microscopy of transiently transfected cells showed that in the absence of other viral proteins, the ORF9 protein was localized in the cytoplasm while IE62 was localized in the nucleus. In VZV-infected cells, the ORF9 protein was localized to the cytoplasm whereas IE62 exhibited both nuclear and cytoplasmic localization. Cotransfection of plasmids expressing ORF9, IE62, and the viral ORF66 kinase resulted in significant colocalization of ORF9 and IE62 in the cytoplasm. Coimmunoprecipitation experiments with antitubulin antibodies indicate the presence of ORF9-IE62-tubulin complexes in infected cells. Colocalization of ORF9 and tubulin in transfected cells was visualized by confocal microscopy. These data suggest a model for ORF9 protein function involving complex formation with IE62 and possibly other tegument proteins in the cytoplasm at late times in infection.


2008 ◽  
Vol 83 (1) ◽  
pp. 228-240 ◽  
Author(s):  
Barbara Berarducci ◽  
Jaya Rajamani ◽  
Mike Reichelt ◽  
Marvin Sommer ◽  
Leigh Zerboni ◽  
...  

ABSTRACT Varicella-zoster virus (VZV) glycoprotein E (gE) is the most abundant glycoprotein in infected cells and, in contrast to those of other alphaherpesviruses, is essential for viral replication. The gE ectodomain contains a unique N-terminal region required for viral replication, cell-cell spread, and secondary envelopment; this region also binds to the insulin-degrading enzyme (IDE), a proposed VZV receptor. To identify new functional domains of the gE ectodomain, the effect of mutagenesis of the first cysteine-rich region of the gE ectodomain (amino acids 208 to 236) was assessed using VZV cosmids. Deletion of this region was compatible with VZV replication in vitro, but cell-cell spread of the rOka-ΔCys mutant was reduced significantly. Deletion of the cysteine-rich region abolished the binding of the mutant gE to gI but not to IDE. Preventing gE binding to gI altered the pattern of gE expression at the plasma membrane of infected cells and the posttranslational maturation of gI and its incorporation into viral particles. In contrast, deletion of the first cysteine-rich region did not affect viral entry into human tonsil T cells in vitro or into melanoma cells infected with cell-free VZV. These experiments demonstrate that gE/gI heterodimer formation is essential for efficient cell-cell spread and incorporation of gI into viral particles but that it is dispensable for infectious varicella-zoster virion formation and entry into target cells. Blocking gE binding to gI resulted in severe impairment of VZV infection of human skin xenografts in SCIDhu mice in vivo, documenting the importance of cell fusion mediated by this complex for VZV virulence in skin.


1985 ◽  
Vol 55 (1) ◽  
pp. 45-53 ◽  
Author(s):  
C R Roberts ◽  
A C Weir ◽  
J Hay ◽  
S E Straus ◽  
W T Ruyechan

Sign in / Sign up

Export Citation Format

Share Document