Force Effects of the Macro-Instability of Flow Pattern on Radial Baffles in a Stirred Vessel With Pitched-Blade and Rushton Turbine Impellers

2004 ◽  
Vol 82 (9) ◽  
pp. 1268-1281 ◽  
Author(s):  
P. Hasal ◽  
I. Fort ◽  
J. Kratena
2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Volker Bliem ◽  
Heyko Jürgen Schultz

Horizontal velocity flow fields were measured by particle image velocimetry for a stirred vessel with baffles and two helical coils for enlargement of heat transfer area. The investigation was carried out in a cylindrical vessel with flat base and two different stirrers (radial-flow Rushton turbine and axial-flow propeller stirrer). Combined velocity plots for flow fields at different locations are presented. It was found that helical coils change the flow pattern significantly. Measurements for the axial-flow Rushton turbine showed a strong deflection by the coils, leading to a mainly tangential flow pattern. Behind baffles large areas of unused heat transfer area were found. First results for the axial-flow propeller reveal an extensive absence of fluid movement in the horizontal plane. Improved design considerations for enhanced heat transfer by more compatible equipment compilation are proposed.


Author(s):  
Yinghui Wang ◽  
Lin Hao ◽  
Zhenxing Zhu ◽  
Jinjie Xu ◽  
Hongyuan Wei

Abstract In this paper, the transient MRF approach coupled with the standard k-ε and SST k-ω turbulence models was employed to study the effect of bottom shape, impeller diameter (D J) and bottom height (H 2) on critical impeller off-bottom clearance (C). It was found the bottom shape and bottom height (H 2) have obvious influence on the flow pattern transition from double-loop to single-loop of RT impeller. The flow pattern transition mechanism was inferred to relate to the relationship between the space required by the lower circulation zone and the actual space. The boundary conditions of critical C were further concluded to help distinguish the flow pattern and receive the expected one in the stirred vessel design.


2011 ◽  
Vol 1 (4) ◽  
Author(s):  
Wajdi Chtourou ◽  
Meriem Ammar ◽  
Zied Driss ◽  
Mohamed Abid

AbstractIn this paper, we performed a comparison of four turbulence models using for numerical simulation of the hydrodynamic structure generated by a Rushton turbine in a cylindrical tank. The finite volume method was employed to solve the Navier-Stokes equations governing the transport of momentum. In this study four closure models tested were: k-ɛ standard, k-ɛ RNG, k-ɛ Realizable and RSM (Reynolds Stress Model). MRF (Multi Reference Frame) technique was used with FLUENT software package. The present work aimed to provide improved predictions of turbulent flow in a stirred vessel and in particular to assess the ability to predict the dissipation rate of turbulent kinetic energy (e) that constitutes a most stringent test of prediction capability due to the small scales at which dissipation takes place. The amplitude of local and overall dissipation rate is shown to be strongly dependent on the choice of turbulence model. The numerical predictions were compared with literature results for comparable configurations and with experimental data obtained using Particle Image Velocimetry (PIV). A very good agreement was found with regards to turbulence.


2014 ◽  
Vol 35 (1) ◽  
pp. 55-73 ◽  
Author(s):  
Zbyněk Kálal ◽  
Milan Jahoda ◽  
Ivan Fořt

Abstract The main topic of this study is the experimental measurement and mathematical modelling of global gas hold-up and bubble size distribution in an aerated stirred vessel using the population balance method. The air-water system consisted of a mixing tank of diameter T = 0.29 m, which was equipped with a six-bladed Rushton turbine. Calculations were performed with CFD software CFX 14.5. Turbulent quantities were predicted using the standard k-ε turbulence model. Coalescence and breakup of bubbles were modelled using the homogeneous MUSIG method with 24 bubble size groups. To achieve a better prediction of the turbulent quantities, simulations were performed with much finer meshes than those that have been adopted so far for bubble size distribution modelling. Several different drag coefficient correlations were implemented in the solver, and their influence on the results was studied. Turbulent drag correction to reduce the bubble slip velocity proved to be essential to achieve agreement of the simulated gas distribution with experiments. To model the disintegration of bubbles, the widely adopted breakup model by Luo & Svendsen was used. However, its applicability was questioned.


Author(s):  
Mohamed Nabil Noui-Mehidi ◽  
Naoto Ohmura ◽  
Jie Wu ◽  
Bon Van Nguyen ◽  
Nami Nishioka ◽  
...  

An experimental study of isolated mixing regions (IMRs) in a cylindrical vessel stirred by three different impellers (a six-blade Rusthon turbine, a four-blade Lightnin A315 impeller and an axial CPE RTF4 impeller) has shown the existence of IMRs in all three systems at low Reynolds numbers. Calculations of the Re ranges in which IMRs exist, torque measurements and flow visualizations enabled the analysis of the effects of impeller type and the flow structures when IMRs were present. Particular attention was given to the case of the Rushton turbine, where digital image analysis revealed that the mechanism of IMR disappearance can be described as a period-doubling locus in the physical space, in which IMRs completely disappear at a critical Re, resulting in global mixing.


2001 ◽  
Author(s):  
Adélio S. Cavadas ◽  
Fernando T. Pinho

Abstract Measurements of power consumption in stirred vessel flows powered by a Rushton and an hyperboloid impeller were carried out. The fluids were aqueous solutions of tylose, CMC and xanthan gum at weight concentrations ranging from 0.1% to 0.6% and also included Newtonian fluids. For the Rushton turbine flows the addition of polymer increased the Newton number by about 13–20% at Reynolds numbers in the range 1,000–3,000, whereas with the hyperboloid impeller the Newton number decreased about 13%. This decrease was especially noticeable for the CMC solutions and was absent from the 0.2% tylose solution flow. Concentrated aqueous solutions of CMC (5.2%) and XG (3.6%) were also produced to determine the characteristic impeller parameter k for the hyperboloid, following the procedure of Metzner and Otto (1957) which was found to be 48 ±16.


Sign in / Sign up

Export Citation Format

Share Document