Using Physiologically Based Pharmacokinetic (PBPK) Modeling to Evaluate the Impact of Pharmaceutical Excipients on Oral Drug Absorption: Sensitivity Analyses

2016 ◽  
Vol 18 (6) ◽  
pp. 1500-1511 ◽  
Author(s):  
Edwin Chiu Yuen Chow ◽  
Arjang Talattof ◽  
Eleftheria Tsakalozou ◽  
Jianghong Fan ◽  
Liang Zhao ◽  
...  
Author(s):  
Armin Sadighi ◽  
Lorenzo Leggio ◽  
Fatemeh Akhlaghi

Abstract Aims A physiologically based pharmacokinetic (PBPK) modeling approach was used to simulate the concentration-time profile of ethanol (EtOH) in stomach, duodenum, plasma and other tissues upon consumption of beer and whiskey under fasted and fed conditions. Methods A full PBPK model was developed for EtOH using the advanced dissolution, absorption and metabolism (ADAM) model fully integrated into the Simcyp Simulator® 15 (Simcyp Ltd., Sheffield, UK). The prediction performance of the developed model was verified and the EtOH concentration-time profile in different organs was predicted. Results Simcyp simulation showed ≤ 2-fold difference in values of EtOH area under the concentration-time curve (AUC) in stomach and duodenum as compared to the observed values. Moreover, the simulated EtOH maximum concentration (Cmax), time to reach Cmax (Tmax) and AUC in plasma were comparable to the observed values. We showed that liver is exposed to the highest EtOH concentration, faster than other organs (Cmax = 839.50 mg/L and Tmax = 0.53 h), while brain exposure of EtOH (AUC = 1139.43 mg·h/L) is the highest among all other organs. Sensitivity analyses (SAs) showed direct proportion of EtOH rate and extent of absorption with administered EtOH dose and inverse relationship with gastric emptying time (GE) and steady-state volume of distribution (Vss). Conclusions The current PBPK model approach might help with designing in vitro experiments in the area of alcohol organ damage or alcohol-drug interaction studies.


2021 ◽  
Author(s):  
◽  
Rafael Leal Monteiro Paraiso

Computational oral absorption models, in particular PBBM models, provide a powerful tool for researchers and pharmaceutical scientists in drug discovery and formulation development, as they mimic and can describe the physiologically processes relevant to the oral absorption. PBBM models provide in vivo context to in vitro data experiments and allow for a dynamic understanding of in vivo drug disposition that is not typically provided by data from standard in vitro assays. Investigations using these models permit informed decision-making, especially regarding to formulation strategies in drug development. PBBM models, but can also be used to investigate and provide insight into mechanisms responsible for complex phenomena such as food effect in drug absorption. Although there are obviously still some gaps regarding the in silico construction of the gastrointestinal environment, ongoing research in the area of oral drug absorption (e.g. the UNGAP, AGE-POP and InPharma projects) will increase knowledge and enable improvement of these models. PBBM can nowadays provide an alternative approach to the development of in vitro–in vivo correlations. The case studies presented in this thesis demonstrate how PBBM can address a mechanistic understanding of the negative food effect and be used to set clinically relevant dissolution specification for zolpidem immediate release tablets. In both cases, we demonstrated the importance of integrating drug properties with physiological variables to mechanistically understand and observe the impact of these parameters on oral drug absorption. Various complex physiological processes are initiated upon food consumption, which can enhance or reduce a drug’s dissolution, solubility, and permeability and thus lead to changes in drug absorption. With improvements in modeling and simulation software and design of in vitro studies, PBBM modeling of food effects may eventually serve as a surrogate for clinical food effect studies for new doses and formulations or drugs. Furthermore, the application of these models may be even more critical in case of compounds where execution of clinical studies in healthy volunteers would be difficult (e.g., oncology drugs). In the fourth chapter we have demonstrated the establishment of the link between biopredictive in vitro dissolution testing (QC or biorelevant method) PBBM coupled with PD modeling opens the opportunity to set truly clinically relevant specifications for drug release. This approach can be extended to other drugs regardless of its classification according to the BCS. With the increased adoption of PBBM, we expect that best practices in development and verification of these models will be established that can eventually inform a regulatory guidance. Therefore, the application of Physiologically Based Biopharmaceutical Modelling is an area with great potential to streamline late-stage drug development and impact on regulatory approval procedures. Freie Schlagwörter / Tags


2019 ◽  
Vol 105 (2) ◽  
pp. 323-325 ◽  
Author(s):  
Ling Zou ◽  
Zhanglin Ni ◽  
Eleftheria Tsakalozou ◽  
Kathleen M. Giacomini

Pharmaceutics ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 997 ◽  
Author(s):  
Raul Huet ◽  
Gunnar Johanson

(1) Background: Inhalant abuse and misuse are still widespread problems. 1,1-Difluoroethane abuse is reported to be potentially fatal and to cause acute and chronic adverse health effects. Lab testing for difluoroethane is seldom done, partly because the maximum detection time (MDT) is unknown. We sought to reliably estimate the MDT of difluoroethane in blood after inhalation abuse; (2) Methods: MDT were estimated for the ad ult male American population using a physiologically based pharmacokinetic (PBPK) model and abuse patterns detailed by two individuals. Based on sensitivity analyses, variability in huffing pattern and body mass index was introduced in the model by Monte Carlo simulation; (3) Results: With a detection limit of 0.14 mg/L, the median MDT was estimated to be 10.5 h (5th–95th percentile 7.8–12.8 h) after the 2-h abuse scenario and 13.5 h (10.5–15.8 h) after the 6-h scenario. The ranges reflect variability in body mass index (and, hence, amount of body fat) and, more so, variable inhalation patterns; (4) Conclusions: Our simulations suggest that the MDT of difluoroethane in blood after abuse ranges from 7.8 to 15.8 h. Although shorter compared to many other drugs, these MDT are sufficient to allow for testing several hours after suspected intoxication in a patient.


Sign in / Sign up

Export Citation Format

Share Document