scholarly journals Use of Physiologically Based Pharmacokinetic (PBPK) Modeling for Predicting Drug-Food Interactions: an Industry Perspective

2020 ◽  
Vol 22 (6) ◽  
Author(s):  
Arian Emami Riedmaier ◽  
Kevin DeMent ◽  
James Huckle ◽  
Phil Bransford ◽  
Cordula Stillhart ◽  
...  

AbstractThe effect of food on pharmacokinetic properties of drugs is a commonly observed occurrence affecting about 40% of orally administered drugs. Within the pharmaceutical industry, significant resources are invested to predict and characterize a clinically relevant food effect. Here, the predictive performance of physiologically based pharmacokinetic (PBPK) food effect models was assessed via de novo mechanistic absorption models for 30 compounds using controlled, pre-defined in vitro, and modeling methodology. Compounds for which absorption was known to be limited by intestinal transporters were excluded in this analysis. A decision tree for model verification and optimization was followed, leading to high, moderate, or low food effect prediction confidence. High (within 0.8- to 1.25-fold) to moderate confidence (within 0.5- to 2-fold) was achieved for most of the compounds (15 and 8, respectively). While for 7 compounds, prediction confidence was found to be low (> 2-fold). There was no clear difference in prediction success for positive or negative food effects and no clear relationship to the BCS category of tested drug molecules. However, an association could be demonstrated when the food effect was mainly related to changes in the gastrointestinal luminal fluids or physiology, including fluid volume, motility, pH, micellar entrapment, and bile salts. Considering these findings, it is recommended that appropriately verified mechanistic PBPK modeling can be leveraged with high to moderate confidence as a key approach to predicting potential food effect, especially related to mechanisms highlighted here.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 813
Author(s):  
Yoo-Seong Jeong ◽  
Min-Soo Kim ◽  
Nora Lee ◽  
Areum Lee ◽  
Yoon-Jee Chae ◽  
...  

Fexuprazan is a new drug candidate in the potassium-competitive acid blocker (P-CAB) family. As proton pump inhibitors (PPIs), P-CABs inhibit gastric acid secretion and can be used to treat gastric acid-related disorders such as gastroesophageal reflux disease (GERD). Physiologically based pharmacokinetic (PBPK) models predict drug interactions as pharmacokinetic profiles in biological matrices can be mechanistically simulated. Here, we propose an optimized and validated PBPK model for fexuprazan by integrating in vitro, in vivo, and in silico data. The extent of fexuprazan tissue distribution in humans was predicted using tissue-to-plasma partition coefficients in rats and the allometric relationships of fexuprazan distribution volumes (VSS) among preclinical species. Urinary fexuprazan excretion was minimal (0.29–2.02%), and this drug was eliminated primarily by the liver and metabolite formation. The fraction absorbed (Fa) of 0.761, estimated from the PBPK modeling, was consistent with the physicochemical properties of fexuprazan, including its in vitro solubility and permeability. The predicted oral bioavailability of fexuprazan (38.4–38.6%) was within the range of the preclinical datasets. The Cmax, AUClast, and time-concentration profiles predicted by the PBPK model established by the learning set were accurately predicted for the validation sets.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S669-S669
Author(s):  
Dung N Nguyen ◽  
Xiusheng Miao ◽  
Mindy Magee ◽  
Guoying Tai ◽  
Peter D Gorycki ◽  
...  

Abstract Background Fostemsavir (FTR) is an oral prodrug of the first-in-class attachment inhibitor temsavir (TMR) which is being evaluated in patients with multidrug resistant HIV-1 infection. In vitro studies indicated that TMR and its 2 major metabolites are inhibitors of organic cation transporters (OCT)1, OCT2, and multidrug and toxin extrusion transporters (MATEs). To assess the clinical relevance, of OCT and MATE inhibition, mechanistic static DDI prediction with calculated Imax,u/IC50 ratios was below the cut-off limits for a DDI flag based on FDA guidelines and above the cut-off limits for MATEs based on EMA guidelines. Methods Metformin is a commonly used probe substrate for OCT1, OCT2 and MATEs. To predict the potential for a drug interaction between TMR and metformin, a physiologically based pharmacokinetic (PBPK) model for TMR was developed based on its physicochemical properties, in vitro and in vivo data. The model was verified and validated through comparison with clinical data. The TMR PBPK model accurately described AUC and Cmax within 30% of the observed data for single and repeat dose studies with or without food. The SimCYP models for metformin and ritonavir were qualified using literature data before applications of DDI prediction for TMR Results TMR was simulated at steady state concentrations after repeated oral doses of FTR 600 mg twice daily which allowed assessment of the potential OCT1, OCT2, and MATEs inhibition by TMR and metabolites. No significant increase in metformin systemic exposure (AUC or Cmax) was predicted with FTR co-administration. In addition, a sensitivity analysis was conducted for either hepatic OCT1 Ki, or renal OCT2 and MATEs Ki values. The model output indicated that, a 10-fold more potent Ki value for TMR would be required to have a ~15% increase in metformin exposure Conclusion Based on mechanistic static models and PBPK modeling and simulation, the OCT1/2 and MATEs inhibition potential of TMR and its metabolites on metformin pharmacokinetics is not clinically significant. No dose adjustment of metformin is necessary when co-administered with FTR Disclosures Xiusheng Miao, PhD, GlaxoSmithKline (Employee) Mindy Magee, Doctor of Pharmacy, GlaxoSmithKline (Employee, Shareholder) Peter D. Gorycki, BEChe, MSc, PhD, GSK (Employee, Shareholder) Katy P. Moore, PharmD, RPh, ViiV Healthcare (Employee)


Author(s):  
Armin Sadighi ◽  
Lorenzo Leggio ◽  
Fatemeh Akhlaghi

Abstract Aims A physiologically based pharmacokinetic (PBPK) modeling approach was used to simulate the concentration-time profile of ethanol (EtOH) in stomach, duodenum, plasma and other tissues upon consumption of beer and whiskey under fasted and fed conditions. Methods A full PBPK model was developed for EtOH using the advanced dissolution, absorption and metabolism (ADAM) model fully integrated into the Simcyp Simulator® 15 (Simcyp Ltd., Sheffield, UK). The prediction performance of the developed model was verified and the EtOH concentration-time profile in different organs was predicted. Results Simcyp simulation showed ≤ 2-fold difference in values of EtOH area under the concentration-time curve (AUC) in stomach and duodenum as compared to the observed values. Moreover, the simulated EtOH maximum concentration (Cmax), time to reach Cmax (Tmax) and AUC in plasma were comparable to the observed values. We showed that liver is exposed to the highest EtOH concentration, faster than other organs (Cmax = 839.50 mg/L and Tmax = 0.53 h), while brain exposure of EtOH (AUC = 1139.43 mg·h/L) is the highest among all other organs. Sensitivity analyses (SAs) showed direct proportion of EtOH rate and extent of absorption with administered EtOH dose and inverse relationship with gastric emptying time (GE) and steady-state volume of distribution (Vss). Conclusions The current PBPK model approach might help with designing in vitro experiments in the area of alcohol organ damage or alcohol-drug interaction studies.


2002 ◽  
Vol 11 (3-4) ◽  
pp. 259-271 ◽  
Author(s):  
Erna M. Hissink ◽  
Jan J.P. Bogaards ◽  
Andreas P. Freidig ◽  
Jan N.M. Commandeur ◽  
Nico P.E. Vermeulen ◽  
...  

2020 ◽  
Vol 65 (3) ◽  
Author(s):  
Ryan Arey ◽  
Brad Reisfeld

ABSTRACT Artemisinin-based combination therapies (ACTs) have proven to be effective in helping to combat the global malaria epidemic. To optimally apply these drugs, information about their tissue-specific disposition is required, and one approach to predict these pharmacokinetic characteristics is physiologically based pharmacokinetic (PBPK) modeling. In this study, a whole-body PBPK model was developed to simulate the time-dependent tissue concentrations of artesunate (AS) and its active metabolite, dihydroartemisinin (DHA). The model was developed for both rats and humans and incorporated drug metabolism of the parent compound and major metabolite. Model calibration was conducted using data from the literature in a Bayesian framework, and model verification was assessed using separate sets of data. Results showed good agreement between model predictions and the validation data, demonstrating the capability of the model in predicting the blood, plasma, and tissue pharmacokinetics of AS and DHA. It is expected that such a tool will be useful in characterizing the disposition of these chemicals and ultimately improve dosing regimens by enabling a quantitative assessment of the tissue-specific drug levels critical in the evaluation of efficacy and toxicity.


2020 ◽  
Author(s):  
Ryan Arey ◽  
Brad Reisfeld

AbstractArtemisinin-based combination therapies (ACTs) have proven to be effective in helping to combat the global malaria epidemic. To optimally apply these drugs, information about their tissue-specific disposition is required, and one approach to predict these pharmacokinetic characteristics is physiologically-based pharmacokinetic (PBPK) modeling. In this study, a whole-body PBPK model was developed to simulate the time-dependent tissue concentrations of artesunate (AS) and its active metabolite, dihydroartemisinin (DHA). The model was developed for both rats and humans and incorporated drug metabolism of the parent compound and major metabolite. Model calibration was conducted using data from the literature in a Bayesian framework, and model verification was assessed using separate sets of data. Results showed good agreement between model predictions and the validation data, demonstrating the capability of the model in predicting the blood, plasma, and tissue pharmacokinetics of AS and DHA. It is expected that such a tool will be useful in characterizing the disposition of these chemicals and ultimately improve dosing regimens by enabling a quantitative assessment of the tissue-specific drug levels critical in the evaluation of efficacy and toxicity.


Sign in / Sign up

Export Citation Format

Share Document